E
large number

T, oblem Es?m?ﬂ'ersfrms aue

=‘I‘eedos;lhnd lev -l e
£ e growth | runl‘l i I‘Ig
values;algorit MS ipothesis performance make* m.n,
memcl’ gE - rgo ram I“ogl“amSE
objectiF ¥ = foop P! Problems—~=|'lme$]
Zinputint g1 Sight = t iorder .=
srim

e .,..... constantu\ method

Performance “’ -: al’l'alj

P codemer 4, ONE s(eve T‘"’ees""' e £ =°bJe¢|'s
solve 5 E -E example Java hypotheses
A~ "“sizeProrogram

Running Time

“As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any result
is sought by its aid, the question will arise - By what course
of calculation can these results be arrived at by the machine
in the shortest time?” — Charles Babbage

how many times do you
have to turn the crank?

Charles Babbage (1864)

Analytic Engine

4.1 Performance

The Challenge

bab pomfret 2005

debug solve problems
on test cases in practice

compile

Q. Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s]
Use the scientific method to understand performance.

Scientific Method

Scientific method.
* Observe some feature of the natural world.
* Hypothesize a model that is consistent with the observations.
* Predict events using the hypothesis.
* Verify the predictions by making further observations.
* Validate by repeating until the hypothesis and observations agree.

Principles.
* Experiments must be reproducible;
* Hypotheses must be falsifiable.

philpmartininto

Algorithmic Successes

Discrete Fourier transform.
* Break down waveform of N samples into periodic components.
* Applications: DVD, JPEG, MRI, astrophysics, ...
* Brute force: N2 steps. Freidrich Gauss

1805

* FFT algorithm: N log N steps, enables new technology.

time

quadratic
64T
- e— 0 —
L
32T
=B |
167 linearithmic !) .
T Lo
8T - !
linear A

T T T T
size — 1K 2K 4K 8K

Reasons to Analyze Algorithms

Predict performance.
* Will my program finish?
* When will my program finish?

Compare algorithms.
* Will this change make my program faster?
* How can I make my program faster?

Basis for inventing new ways to solve problems.

* Enables new technology.
¢ Enables new research.

Algorithmic Successes

N-body Simulation.
* Simulate gravitational interactions among N bodies.

* Brute force: N2 steps.

* Barnes-Hut: N log N steps, enables new research. Andrew Appel

PU ‘81

time
quadratic
64T

32T

16T . . .
linearithmic

8T -
linear

T T T T

size — 1K 2K 4K 8K

Example: Three-Sum Problem

Three-sum problem. Given N integers, find triples that sum to 0.
Application. Deeply related to problems in computational geometry.

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt

4

30 -30 0

30 -20 -10
-30 -10 40
=10 0 10

Q. How would you write a program to solve the problem?

Empirical Analysis

Three-Sum

public class ThreeSum
{
// Return number of distinct triples (i, j, k)
// such that (a[i] + a[j] + a[k] == 0)
public static int count(int[] a) {
int N = a.length;
int ent = 0;

for (int i = 0; i < N; i++) all possible friples i< j<k
for (int j = i+l; j < N; j++)
for (int k = j+1; k < N; k++) ////
if (a[i] + a[j] + a[k] == 0) cnt++;

return cnt;

public static void main(String[] args) {
int[] a = StdArrayIO.readIntlD();
StdOut.println(count(a));

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

e (570) | e o)

500 62 0.03
1,000 531 0.26
2,000 4322 2.16
4,000 34377 17.18
8,000 265438 137.76

1. Time in seconds on Jan 18, 2010 running Linux on Sun-Fire-X4100 with 1668 RAM
2. Time in seconds in 1970 running MVT on IBM 360/50 with 256 KB RAM (estimate)

Stopwatch

Stopwatch
Q. How fo time a program? Q. How to time a program?
A. A stopwatch. A. A Stopwatch object.
pubTlic class Stopwatch
% Jjava ThreeSum < 1Kints. txt Stopwatch() create a new stopwatch and start it running
ek sk tick double elapsedTime() return the elapsed time since creation, in seconds

0 public class Stopwatch
% java ThreeSum < 2Kints.txt { X)
private final long start;
tick tick tick tick tick tick)
tick tick tick tick tick tick P‘Jbllc StOPwatCh ()
tick tick tick tick tick tick {
tick tick tick tick tick tick start = System.currentTimeMillis() ;
}
2
391930676 -763182495 371251819 public double elapsedTime ()
-326747290 802431422 -475684132 {
return (System.currentTimeMillis() - start) / 1000.0;
}
}
13 14
Stopwatch Data Analysis
Q. How fo time a program? Data analysis. Plot running time vs. input size N.
A. A Stopwatch object.
150 300000 =
public class Stopwatch i d
Stopwatch() create a new stopwatch and start it running 100 J 200000]
—_ ()
double elapsedTime() return the elapsed time since creation, in seconds 12 'g
2 E
S 50 *100000
public static void main(String[] args)
{
int[] a = StdArrayIO.readIntlD(); 0 2 g T T T T T T 1 0 1 g T T T T T T 1
. 0 2000 4000 8000 0 2000 4000 8000
Stopwatch timer = new Stopwatch(); input size N input size N
X 2010 1970
StdOut.println(count(a)) ;

StdOut.println(timer.elapsedTime()) ;

Q. How does running time grow as a function of input size N ?
Hypothesis: Running times on different computers differ by a constant factor

16

Data Analysis

Data analysis. Plot running time vs. input size N on a log-log scale

4 -

3 =

Ig(time)

2 =

1 -

| —
10 11 12 13
Ig (N)

straight line of

/ slope 3
7

1,000
2,000
4,000

8,000

0.26 10
2.16 1
17.18 12
137.76 13

Ig (T(N)) = 3 1gN+a
T(N)=a N3

Hypothesis: Running time grows as the cube of the input size: a N3

Doubling hypothesis

machine-dependent
constant factor

Doubling hypothesis. Quick two-step method for prediction.

Hypothesis: T(2N)/T(N) approaches a constant.

Step 1: Run program, doubling input size,

to find the constant

17

500 0.03 -
Step 2: Extrapolate to predict next entries 1,000 0.26 7.88
2000 216 843
Consistent with power law hypothesis 4000 1718 7.96
a(2N)> / aNP = 20 8000 13776 7.96 _|
(exponent is Ig of ratio) 16000 1102 8
32000 8816 '\8
Admits more functions \
Ex. T(N)=NIg N 512000 36112957

a(2NIg2N)/aNIgN=2 +1/(IgN) — 2

S\ seems to

I~ 137.76*8

I~ 1102*8

o~

8816*8*

converge to 8

Prediction and verification
Hypothesis. Running time is about a N 3 for input of size N.

Q. How to estimate a ?
A. Solve for it!

137.76 = ax8000°
= a=27x10710

Refined hypothesis. Running time is about 2.7 x 10 % x N 3 seconds.
Prediction. 1,100 seconds for N = 16,000.
Observation.

time (seconds)

16000 1110.73

validates hypothesis!

TEQ on Performance 1

Let F(N) be the running time of program Mystery for input N.

public static Mystery
{

int N = Integer.parseInt(args[0]);

Observation:

1,000 4

2,000 15 4
4,000 60 4
8,000 240 4

Q. Predict the running time for N = 128,000

20

TEQ on Performance 2

Let F(N) be the running time of program Mystery for input N.

Mathematical Analysis
public static Mystery
{

int N = Integer.parseInt(args[0]);

Observation:

1,000 4

2,000 15 4
4,000 60 4
8,000 240 4

Q. Order of growth of the running time?

21

Mathematical models for running time Example: 1-sum
Total running time: sum of cost x frequency for all operations.

Q. How many instructions as a function of N?

* Need fo analyze program to determine set of operations.
* Cost depends on machine, compiler. .
int count = 0;
* Frequency depends on algorithm, input data. for (int i =

0; i < N; i++)
if (a[i]

== 0) count++;

~ THE CLASSIC WORK
DAND REVIS NEWLY UPDATED AND REVISED

The Art of

The Art of The Art of
Computer Computer Computer
Programming Programming

Programming

Fun I Algorithms

variable declaration 2
assignment statement 2
DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH Donald Knuth
1974 Turing Award less than compare N+1

equal to compare

between N (no zeros)

array access |~ and 2N (all zeros)

N /
'Y increment 2N
4 2

In principle, accurate mathematical models are available

IA

23

Example: 2-sum

Q. How many instructions as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; Jj++)
if (a[i] + a[j] == 0) count++;

0+14+2+4...+(N-1) = %N(N—l]
:
variable declaration N+2 B (2)
assignment statement N+2
less than compare 1/2(N+ 1) (N +}/
equal to compare 1/2 N(N-1)
tedious to count exactly
array access N(N=1)
increment < N2

25

Example: 2-sum

Q. How long will it take as a function of N?

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; Jj++)

if (a[i] + a[j] == 0) count++; |<— “inner loop"

~ N C

variable declaration ~aN
assignment statement ~ N [« ~aaN
less than comparison ~1/2 N2
c ~ aN?
equal to comparison ~1/2 N2
depends on
array access ~ N2 Ca ~ CAV input data
increment < N2 Cs < N2

depends on machine 27

"inner loop'

Tilde notation

* Estimate running time (or memory) as a function of input size N.
* Ignore lower order terms.

- when N is large, terms are negligible

- when N is small, we don't care

Ex1. 6N3+ 20N + 16 ~ 6N3

Ex2. 6N3+ 100N43 + 56 ~ 6N3

Ex3. 6N3+ 1TN2IgN+ 7N ~ 6N3
%/—/

discard lower-order terms
(e.g., N = 1000: 6 billion vs. 169 million)

. A . f(N)
Technical definition. ~ means lim ——= =1
f SIN) ~ g(N) Ve ()
26
Example: 3-sum
Q. How many instructions as a function of N?
int count = 0; «— ~1
for (int i = 0; i < N; i++)
~N
for (int j = i+l; j < N; j++)
~N2/2

for (int k = j+1; k < N; k++)

if (ali] + a[j] + a[k] == 0)| (];,/) _ w
count++; 1.3
X ~ o

may be in inner loop, depends on input data

Remark. Focus on instructions in inner loop; ignore everything else!

28

Mathematical models for running time
In principle, accurate mathematical models are available.

In practice,

» Formulas can be complicated.

* Advanced mathematics might be required.
* Exact models best left for experts.

costs (depend on machine, compiler)

N T~

Tn = ctA + 2B + ¢c3C + caD + c5E
A = variable declarations
B = assignment statements § frequencies
C = compare ; (depend on algorithm, input)
D = array access
E = increment

11/

AN

Bottom line. We use approximate models in this course: Tn~c N3,

Analysis: Empirical vs. Mathematical

Empirical analysis.
* Use doubling hypothesis to solve for a and b in power-law model ~ a N,
* Easy to perform experiments.
* Model useful for predicting, but not for explaining.

Mathematical analysis.
* Analyze algorithm to develop a model of running time as a function of N
[gives a power-law or similar model where doubling hypothesis is valid].
* May require advanced mathematics.
* Model useful for predicting and explaining.
not quite, need empirical study to find a nowadays
Scientific method.
* Mathematical model is independent of a particular machine or compiler;
can apply to machines not yet built.
 Empirical analysis is necessary to validate mathematical models.

31

29

Constants in Power Law
Power law. Running time of a typical programis ~a NP,

Exponent b depends on: algorithm. similar factors

Constant a depends on:
* algorithm } system independent effects
* input data

* hardware (CPU, memory, cache, ...)

* software (compiler, interpreter, garbage collector,...)

* system (network, other applications,...

Our approach.
* Empirical analysis (doubling hypothesis to determine b, solve for a)
* Mathematical analysis (approximate models based on frequency counts)
* Scientific method (validate models through extrapolation)

30

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe
running time of many fundamental algorithms.

while (N > 1) { public static void g(int N) {

N=N/2; if (N == 0) return;
000 g(N/2);
} g(N/2);
for (int i = 0; i < N; i++)
IgN }
Ig N = log, N
for (int i = 0; i < N; i++) NigN
N
public static void £ (int N) {
if (N == 0) return;
£(N-1);

for (int i = 0; i < N; i++) BER) 6

for (int j = 0; j < N; j++)

N2 2N

32

not quite, there may be Ig(N) or

system dependent effects

Order of Growth Classifications

time
102474 5 & order of growth factor for
& N . . doubling
512T 8 N 78 description function hypothests
=3
X
4 8 constant 1 1
7] logarithmic log N 1
64T
linear N 2
linearithmic N 10g N 2
8T - quadratic N2 4
47 - cubic N3 8
2T - .
logarithmic exponential 2N 2N
L constant .
Commonly encountered growth functions
T T T T T T T T T T T
size — 1K 2K 4K 8K 1024K

Orders of growth (log-log plot)

33

Dynamic Programming

Order of Growth:

predicted running time if

Consequences

order of growth

predicted factor

of problem size
increase if computer
speed is increased by

Y
(LY

o
ol

I
i

=

===
===

order of growth problem size is increased by a factor of 10
a factor of 100
linear a few minutes linear 10
linearithmic a few minutes linearithmic 10
quadratic several hours quadratic 3-4
cubic a few weeks cubic 2-3
exponential forever exponential 1

Effect of increasing problem size
for a program that runs for a few seconds

Effect of increasing computer speed
on problem size that can be solved in
a fixed amount of time

Binomial Coefficients

Binomial coefficient. (Z) = humber of ways to choose k of n elements.

@

excludes
first element

Pascal's identity.

i) - 15

contains
first element

36

Binomial Coefficients: Sierpinski Triangle

Binomial coefficient. (Z) = number of ways to choose k of n elements.

Sierpinski triangle. Color black the odd integers in Pascal's triangle.

Binomial Coefficients: First Attempt

public class SlowBinomial
{
// Natural recursive implementation
public static long binomial (long n, long k)
{
if (k == 0) return 1;
if (n == 0) return 0;
return binomial (n-1, k-1) + binomial (n-1, k);

}

public static void main(String[] args)
{
int N = Integer.parseInt(args[0]);
int K = Integer.parselInt(args[l]);
StdOut.println(binomial (N, K));

Binomial Coefficients: Poker Odds

Binomial coefficient. (Z) = number of ways to choose k of n elements.

Probability of "quads" in Texas hold 'em:

()
1 2L 2288 o soa L]
(52) 133,784,560 v

7 4

Probability of 6-4-2-1 split in bridge:

(Bl B BB 0B

EY=)

_ 29.858,811,840 (abour 21: 1)
635,013,559,600

TEQ on Performance 3

Is this an efficient way to compute binomial coefficients?

public static long binomial(long n, long k)
{
if (k == 0) return 1;
if (n == 0) return 0;
return binomial (n-1, k-1) + binomial (n-1, k);

40

38

TEQ on Performance 4

Let F(N) be the time to compute binomial(2N, N) using the naive algorithm.

public static long binomial (long n, long k)

{
if (k == 0) return 1;
if (n == 0) return 0;

return binomial (n-1, k-1) + binomial (n-1, k);

Observation: F(N+1)/F(N) is about 4.

What is the order of growth of the running time?

Binomial Coefficients: Dynamic Programming

public class Binomial

{

public static void main(String[] args) {
int N = Integer.parseInt(args[0]);
int K = Integer.parselInt(args[1l]);
long[][] bin = new long[N+1] [K+1];

// base cases
for (int k

1; k <= K; k++) bin[0] [K]

for (int n

// bottom-up
for (int n =

0; n <= N; n++) bin[N][0]

dynamic
1; n <=

programming
N; n++)

for (int k = 1; k <= K; k++)

bin[n] [k] = bin[n-1][k-1] + bin[n-1][k];

// print results
StdOut.println(bin[N] [K]) ;

41

43

Dynamic Programming

Key idea. Save solutions to subproblems to avoid recomputation.

25385
-
5
X
X
K8
6%
XK
QRRRK:
o
030
o
SR
K
KRR
%
o
X
o
o
RRRK

388
RS

B = XK
990088
RRRXS
BB
s
R
St tetst

o
098
KRS

0es
2
2
<5
<5

s
%S
293
&5
KR
o5
22

8%

oS

%
o2
X
2%

XXX
23
S
55
R
R

0%t
&
&
-
9%
232

10 0 5 (n) _ (n—l) . (n—l)
-1
1 k)~ \k k
15 20 15
20=10+10

binomial(n, k)

Tradeoff. Trade (a little) memory for (a huge amount of) time.

42

TEQ on Performance 5

Let F(N) be the time to compute binomial(2N, N) using dynamic programming.

for (int n = 1; n <= 2*N; n++)

for (int k = 1; k <= N; k++)
bin[n] [k]

= bin[n-1] [k-1] + bin[n-1]1[k];

What is the order of growth of the running time?

44

Empirical Analysis Stirling's Approximation

iming experiments for computing binomial coefficients. n alternative approach: =0
Timing experiments f puting binomial coefficient An alfernative approach Z ’("'k)y
n:(n—kKk):
(ZN) direct recursive dynamic Doesn't work: 52! overflows a long, even though final result doesn't.
N solution programming
(fg) 0.46 instant) o)]
Instead of computing exact values, use Stirling's approximation:
28 A
(14) v etert Inn! = nlnn - n + In@zn) + BLE + _
2 12n 360n° 1260n°
(?g) 15.69 instant
32 . _— . . Lo . .
(16) 57.40 instant Application. Probability of exact k heads in n flips with a biased coin.
34 . Mot a-pt
(17) 230.42 instant k
*
I
increase n by 1,
running time
increases by about 4x Easy to compute approximate value with Stirling's formula

45 46

Typical Memory Requirements for Java Data Types

Bit. Oor 1l
Byte. 8 bits.

Megabyte (MB). 2'° bytes ~ 1 million bytes.
Gigabyte (GB). 220 bytes ~ 1 billion bytes.

type bytes type bytes
boolean 1 int[] 4N+ 16
byte 1 double[] 8N + 16
char 2 Charge[] 36N + 16
int 4 int[1[] 4N2+ 20N+ 16
float 4 double[]J[] 8N2+20N+ 16
Tong 8 String 2N + 40
double 8

typical computer '10 has about 26B memory

Q. What's the biggest double array you can store on your computer?

48

TEQ on Performance 6 Summary

How much memory does this program use (as a function of N)? Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method

public class RandomWalk
{ Q. What if it's not fast enough? Not enough memory?
1{3ub11c static void main(String[] args) « Understand why.

int N = Integer.parselInt(args[0]); . Buy a faster computer.

int t = int[N] [N];

;:t[i[i ;‘;;n new int[Nl [l * Learn a better algorithm (COS 226, COS 423).
int y = N/2; * Discover a new algorithm.

for (int i = 0; i < N; i++) {

<-:c.>1‘mt [x] [y]l++;

} cost $$$ or more. $ or less.
} " -
Lo makes "everything does not apply to
} applicability run faster some problems
. incremental quantitative dramatic qualitative
improvement

improvements expected improvements possible

49

