
2.3 Recursion

3

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
•New mode of thinking.
• Powerful programming paradigm.

Many computations are naturally self-referential.
• Binary search, mergesort, FFT, GCD.
• Linked data structures.
• A folder contains files and other folders.

Closely related to mathematical induction.

M. C. Escher, 1956

4

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. gcd(4032, 1272) = 24.

Applications.
• Simplify fractions: 1272/4032 = 53/168.
• RSA cryptosystem.

4032 = 26 ! 32 ! 71

 1272 = 23 ! 31 ! 531

 gcd = 23 ! 31 = 24

Mathematical Induction

Mathematical induction. Prove a statement involving an integer N by

• base case: Prove it for some specific N (usually 0 or 1).

• induction step: Assume it to be true for all positive integers less than N,
use that fact to prove it for N.

Ex. Sum of the first N odd integers is N2.

Base case: True for N = 1.
Induction step:
! Let T(N) be the sum of the first N odd integers: 1 + 3 + 5 + ... + (2N - 1).
! Assume that T(N-1) = (N-1)2.
! T(N) = T(N-1) + (2N - 1)

 = (N-1)2 + (2N - 1)
 = N2 - 2N + 1 + (2N - 1)
 = N2

5

1
1 + 3

1 + 3 + 5
1 + 3 + 5 + 7

1 + 3 + 5 + 7 + 9
...

= 1
= 4
= 9
= 16
= 25
...

Recursive Program

Recursive Program. Implement a function having integer arguments by

• base case: Implementing it for some specific values of the arguments.

• reduction step: Assume the function works for smaller values of its
arguments and use it to implement it for the given values.

Ex. gcd(p, q).

Base case: gcd(p, 0) = p.

Reduction step: gcd(p, q) = gcd(p, p-q) if p-q > 0
 = gcd(p, p-2q) if p-2q > 0
 ...
 = gcd(p, p % q)

6

7

Greatest Common Divisor

GCD. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

gcd(4032, 1272) = gcd(1272, 216)
 = gcd(216, 192)
 = gcd(192, 24)
 = gcd(24, 0)
 = 24.

!

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

"

$

base case
reduction step,
converges to base case

4032 = 3 ! 1272 + 216

8

Euclid’s Algorithm

GCD. Find largest integer d that evenly divides into p and q.

p

p % qq

x x x x x x x x

p = 8x
q = 3x

q

gcd

!

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

"

$

base case

reduction step,
converges to base case

gcd(p, q) = gcd(3x, 2x) = x

9

Euclid’s Algorithm

GCD. Find largest integer d that evenly divides into p and q.

Recursive program

base case
reduction step

public static int gcd(int p, int q)
{
 if (q == 0) return p;
 else return gcd(q, p % q);
}

!

gcd(p, q) =
p if q = 0
gcd(q, p % q) otherwise

"

$

base case

reduction step,
converges to base case

Recursive Graphics

New Yorker Magazine, August 11, 2008

11 12

13

Htree

H-tree of order n.
• Draw an H.
• Recursively draw 4 H-trees of order n-1, one connected to each tip.

and half the size

order 1 order 2 order 3

tip

size

14

Htree in Java

public class Htree
{
 public static void draw(int n, double sz, double x, double y)
 {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1);
 StdDraw.line(x1, y0, x1, y1);

 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }

 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
}

draw the H, centered on (x, y)

recursively draw 4 half-size Hs

15

20% 40% 60% 80% 100%

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

16

Divide-and-Conquer

Divide-and-conquer paradigm.
• Break up problem into smaller subproblems of same structure.
• Solve subproblems recursively using same method.
• Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
• FFT for signal processing.
• Parsers for programming languages.
• Multigrid methods for solving PDEs.
• Quicksort and mergesort for sorting.
• Hilbert curve for domain decomposition.
• Quad-tree for efficient N-body simulation.
• Midpoint displacement method for fractional Brownian motion.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Application: Fractional Brownian Motion

18

Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.
• Price of stocks.
• Dispersion of ink flowing in water.
• Rugged shapes of mountains and clouds.
• Fractal landscapes and textures for computer graphics.

19

Simulating Brownian Motion

Midpoint displacement method.
•Maintain an interval with endpoints (x0, y0) and (x1, y1).
• Divide the interval in half.
• Choose ! at random from Gaussian distribution.
• Set xm = (x0 + x1)/2 and ym = (y0 + y1)/2 + !.
• Recur on the left and right intervals.

20

Simulating Brownian Motion: Java Implementation

Midpoint displacement method.
•Maintain an interval with endpoints (x0, y0) and (x1, y1).
• Choose ! at random from Gaussian distribution.
• Divide the interval in half: Set xm = (x0 + x1)/2 and ym = (y0 + y1)/2 + !.

• Recur on the left and right intervals.

public static void curve(double x0, double y0,
 double x1, double y1, double var)
{
 if (x1 - x0 < 0.01)
 {
 StdDraw.line(x0, y0, x1, y1);
 return;
 }
 double xm = (x0 + x1) / 2;
 double ym = (y0 + y1) / 2;
 ym += StdRandom.gaussian(0, Math.sqrt(var));
 curve(x0, y0, xm, ym, var/2);
 curve(xm, ym, x1, y1, var/2);
}

variance halves at each level;
change factor to get different shapes

21

Plasma Cloud

Plasma cloud centered at (x, y) of size s.
• Each corner labeled with some grayscale value.
• Divide square into four quadrants.
• The grayscale of each new corner is the average of others.

– center: average of the four corners + random displacement
– others: average of two original corners

• Recur on the four quadrants.

!

c2+c4
2

!

c1+c2
2

!

c3+c4
2

!

c1+c3
2

!

(c1+c2+c3+c4)
4 + "

c1 c2

c3 c4

22

Plasma Cloud

23

Brownian Landscape

Reference: http://www.geocities.com/aaron_torpy/gallery.htm
24

Towers of Hanoi

http://en.wikipedia.org/wiki/Image:Hanoiklein.jpg

25

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
•Only one disc may be moved at a time.
• A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

start finish

Edouard Lucas (1883)
26

Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move n-1 smallest discs right. Move largest disc left.
cyclic wrap-around

27

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
• 64 golden discs on 3 diamond pegs.
•World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

28

Towers of Hanoi: Recursive Solution

public class TowersOfHanoi
{
 public static void moves(int n, boolean left)
 {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n-1, !left);
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }

}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

smallest disc

29

Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left

subdivisions
of

ruler

every other move is smallest disc

30

Towers of Hanoi: Recursion Tree

3, true

2, false

1, true 1, true

2, false

1, true 1, true

1 left 2 right 1 left 3 left 2 right 1 left1 left

n, left

1 14

2 7

3 4 65 9 10 1211 17 18 2019 23 24 2625

138 16 21 2722

2815

31

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
• Takes 2n - 1 moves to solve n disc problem.
• Sequence of discs is same as subdivisions of ruler.
• Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
• Alternate between two moves:

– move smallest disc to right if n is even
– make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
• Takes 585 billion years for n = 64 (at rate of 1 disc per second).
• Reassuring fact: any solution takes at least this long!

to left if n is odd

32

Fibonacci Numbers

pinecone

cauliflower

33

Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

!

Fn =

0 if n = 0
1 if n =1
Fn"1 +Fn"2 otherwise

$
%

&
%

34

A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

A natural for recursion?

public static long F(int n)
{
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

!

Fn =

0 if n = 0
1 if n =1
Fn"1 +Fn"2 otherwise

$
%

&
%

!

F(n) =
" n # (1#")n

5
= " n 5$ %

" = golden ratio # 1.618

Ex: F(50) ! 1.2 " 1010

FYI (classical math):

TEQ on Recursion 1.1 (difficult but important)

Is this an efficient way to compute F(50)?

35

public static long F(int n)
{
 if (n == 0) return 0;
 if (n == 1) return 1;
 return F(n-1) + F(n-2);
}

TEQ on Recursion 1.2 (easy and also important)

Is this an efficient way to compute F(50)?

36

long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (n == 1) return 1;
for (int i = 2; i <= 50; i++)
 F[i] = F[i-1] + F[i-2];

37

Summary

How to write simple recursive programs?
• Base case, reduction step.
• Trace the execution of a recursive program.
• Use pictures.

Why learn recursion?
•New mode of thinking.
• Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Exponential time.
• Easy to specify recursive program that takes exponential time.
• Don’t do it unless you plan to (and are working on a small problem).

Towers of Hanoi by W. A. Schloss.

