
1

Software systems and issues: Outline when began

  operating systems
–  controlling the computer

  file systems
–  storing information

  applications
–  programs that do things

  middleware, platforms
–  where programs meet systems

  interfaces, standards
–  agreements on how to communicate and inter-operate

•  open source software
–  freely available software

•  intellectual property
–  copyrights, patents, licenses

Interfaces

agreements on how to communicate and inter-operate

•  How ask for service or cooperation
•  How send inputs
•  How receive results

•  Standardized

Simple example
function circleArea(r) {

 return 3.14 * r * r
 }

Interface: call function with radius value as input
 function will return a value that is the area

How applications use the operating system

1.  operating system provides its services as functions to
be called from application programs

"what is the exact time?"
"allocate more memory to me"
"read N bytes from file F into memory location M"
"write N bytes from memory location M into file F"
"establish a network connection to www.princeton.edu"
"write N bytes to the network connection"
“I’m all done; get rid of me”

-  "system calls" in Unix,
-  Application Program Interface ("API") in Windows

How applications use the operating system

2.  operating system provides interface for applications
to use
–  programs access machine capabilities only through this interface
–  different physical hardware can provide the same interface
–  programs can be moved to any system that provides the same

interface
–  different operating systems can provide the same interface
–  one operating system can simulate the interface provided by

another

3.  operating system hides details of specific hardware

Example of system-call level coding

•  C program to copy input to output ("copy" command)
•  read, write, exit are system calls

 main() {
 char buf[8192];
 int n;
 while ((n = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, n);
 exit(0);
 }

Software is organized into "layers"

•  each layer presents an interface that higher layers can use
–  defines a "platform" for putting more on top
–  insulates the higher layer from how the lower layer is implemented
–  often called "Application Program Interface" or API

•  operating system ("kernel")
–  lowest software layer, on top of hardware

(usually: virtual machine is on top of another program, e.g., an operating system)
–  presents its capabilities as system calls

•  libraries
–  code to be used as building blocks in programs
–  present their capabilities as functions / APIs
–  e.g. Windows Graphics Device Interface

•  applications
–  e.g., browser, word processor, mailer, compiler, directory lister, ...
–  use libraries and system calls through APIs

2

Layering
•  an application generally

calls multiple libraries
–  might not make direct

system calls
•  a library generally calls

other libraries
•  library and system call

levels define interfaces
(APIs)

•  programmers may not know
what is "library" and what
is "system call"

applications

hardware

operating system

library

system calls

library calls

Interface issues
•  application/kernel boundary
•  interface ownership
•  independent implementations
•  platforms
•  middleware
•  virtual machines

application

hardware

operating system

library

system calls

library calls

Where's the line between OS and applications?

•  there are lots of ways to create layers, glue them together
•  many choices of what to include in kernel or put in library

•  “operating system” and “kernel” are not well defined
–  “Windows” might mean everything (OS, applications, etc)
–  “Windows OS” usually means the part that controls the rest
–  "Linux" may mean "kernel" or may mean "kernel + applications"
–  dividing line is not always clear

•  "kernel"
–  minimal part that runs regardless of what else the system is being used

for or is doing
–  provides essential, central services
–  controls shared resources
–  protects information, enforces privacy and security
–  user programs can only use it through its defined interfaces
–  usually runs in hardware-supported protected mode

Where's the line between applications and OS?

•  “operating system” and “kernel” are not well defined
–  “Windows” might mean everything (OS, applications, etc)
–  “Windows OS” usually means the part that controls the rest

•  Dept of Justice v Microsoft was partly about this question
–  is Internet Explorer part of the operating system?
–  will the system be damaged or restricted if IE is removed or replaced?

•  Microsoft said Yes, DoJ said No
–  http://www.usdoj.gov/atr/cases/ms_index.htm

What's an API?

 Operating systems perform many functions, including
allocating computer memory and controlling peripherals
such as printers and keyboards. Operating systems also
function as platforms for software applications. They do
this by "exposing" — i.e., making available to software
developers — routines or protocols that perform certain
widely-used functions. These are known as Application
Programming Interfaces, or "APIs."

Excerpted from Final Judgment
State of New York, et al v. Microsoft Corporation
US District Court, District of Columbia, Nov 1, 2002

USA v. Microsoft Chronology (you are not expected to remember this)

•  7/94: Microsoft sued for Sherman Antitrust Act violations; judgment against MS
•  10/97: Dept of Justice says MS is still doing it
•  5/98: DoJ & 18 states sue MS
•  10/98-2/99: trial with judge Thomas Jackson

–  Prof Ed Felten one of government expert witnesses
–  showed it was quite possible to remove IE from Win95 without harm

•  11/99: "findings of fact": MS is a monopoly, used its power to stifle competition
•  4/00: "findings of law": MS violated Sherman act
•  6/00: Judge Jackson approves proposal to split MS into an "operating system

company" and an "applications company"
•  6/01: appeals court affirms conclusions, but overturns breakup remedy
•  8/01: new judge Colleen Kollar-Kotelly to decide penalties, remedies
•  9/01: DoJ backs off on major issues
•  11/01: proposed settlement:

–  MS can add anything to OS, can't keep OEMs from installing other software, can't
retaliate, must charge uniform prices, must disclose technical information

•  2/02: 11 states pursue suit anyway
–  Prof Andrew Appel an expert witness for states

•  11/02: Kollar-Kotelly's decision basically leaves settlement alone
•  10/05: Kollar-Kotelly scolds Microsoft for delay, violations of settlement
•  10/07: 7 states want agreement extended for 5 more years!
  10/4/10: latest update on joint status report on compliance

3

The Forever War?

 The browser also remains an important product today because it is
used to access such new and emerging technologies as web-based
applications. Some of these technologies may eventually develop into
platform threats to Microsoft’s Windows monopoly. Microsoft,
however, has the ability - by virtue of IE’s dominance and its
resulting control of web standards - to use the browser as a
chokepoint with respect to consumer access to the Internet-centric
technologies that currently represent the most promising nascent
platform threats to Windows.

 Potential platform threats to Microsoft’s dominance in the PC
operating system market are just beginning to emerge. The most
significant of these threats are web-based technologies that open
the markets to competition by reducing the “applications barrier to
entry.”
 Plaintiff States’ Motion to Extend The Modified Final Judgment Until

November 12, 2012
 State of New York et al v. Microsoft, October 16, 2007

Platforms, middleware, virtual machines

•  platform: hardware or software
on which applications can run

•  middleware: uses OS interface
but exposes its own APIs to
developers, so applications using
it can move to any OS where
the middleware has been moved
 (e.g., browser-based software)

•  virtual machine: software that
mimics behavior of hardware so
other software can run on it
 (can be above the operating

system too,
 as in VMWare)

virtual machine

application

hardware

operating system

library

system calls

library calls

middleware

VM Ware

Mac OS

Other Application Programming Interfaces

Applications can also provide APIs
•  interface other applications
•  examples

- Database systems
- Remote services

Databases and database systems

•  informally, database is a large collection of information
•  more formally, an organized collection of logically related records

–  data is organized and structured for efficient systematic access
•  data items have fixed set of attributes

–  name, address, phone number, gender, income, social security number, ...
•  each record has these attributes for a single person / instance
•  database system supports

–  very efficient search for records with specific properties
all the women in 08540 with income > $100K

–  high volumes of traffic with concurrent access and update
"ACID": atomic, consistent, isolated, durable

–  API allows other applications to use database
–  not usually part of an operating system

•  major examples
–  Oracle (owns Peoplesoft)
–  MySQL (open source, now owned by Sun, in turn now owned by Oracle...)
–  SQLite (open source, in devices like iPhone)

