Programming

translate our algorithm into
set of instructions machine can execute

Programming

it's hard to do the programming to get something done
details are hard to get right, very complicated, finicky
not enough skilled people to do what is needed
therefore, enlist machines to do some of the work

- leads to programming languages

it's hard to manage the resources of the computer
hard to control sequences of operations

in ancient times, high cost of having machine be idle
therefore, enlist machines to do some of the work
- leads to operating systems

Evolution of programming languages

+ 1940's: machine level

- use binary or equivalent notations for actual numeric values
+ 1950's: "assembly language"

- names for instructions: ADD instead of 0110101, etc.

- names for locations: assembler keeps track of where things are in memory:;
translates this more humane language into machine language

- this is the level used in the "toy" machine
- needs total rewrite if moved to a different kind of CPU

loop get # read a number
ifzero done # no more input if number is zero assemb|y |ang
add sum # add in accumulated sum program
store sum # store new value back in sum
goto loop # read another number l

done load sum # print sum
print assembler
stop

sum 0 # sum will be 0 when program starts 1

instructions

Evolution of programming languages, 1960's

* "high level" languages -- Fortran, Cobol, Basic
- write in a more natural notation, e.g., mathematical formulas
- aprogram ("compiler", "translator") converts into assembler
- potential disadvantage: lower efficiency in use of machine
- enormous advantages:
accessible to much wider population of users
portable: same program can be translated for different machines
more efficient in programmer fime
Fortran program

sum = 0
10 read(5,*) num
if (num .eq. 0) goto 20 compiler

sum = sum + num

goto 10
assembler

20 write(6,*) sum

stop 1
end instructions

Evolution of programming languages, 1970's

+ "system programming" languages -- C

- efficient and expressive enough to take on any programming task
writing assemblers, compilers, operating systems

- aprogram ("compiler", "translator") converts into assembler

- enormous advantages:
accessible to much wider population of programmers
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

C program
#include <stdio.h>
main () { C compiler
int num, sum = 0;
while (scanf("%d", &num) !'= -1 && num '= 0)
assembler
sum += num;
printf ("$d\n", sum); . ' :
} instructions

C code compiled to assembly language (sPARrc)

.LL2: add %fp, -20, %gl
#include <stdio.h> sethi %hi(.LLCO), %05
A or %05, %lo(.LLCO), %00
main() { mov %gl, %ol
int num, sum = 0; call scanf, 0
while (scanf("$d", &num) != -1 mov 00, %gl
cmp %gl, -1
&& num !'= 0) be LL3
sum = sum + num; 1d [$£p-20], %gl
printf ("$d\n", sum); cmp %gl, 0
} be .LL3
1d [$£p-24], %gl
1d [$£fp-20], %05
add %gl, %05, %gl
st %gl, [%fp-24]
(You are not expected to b -LL2
. .LL3: sethi %hi (.LLC1), %gl
understand this!) or tql, %lo(.LLC1), %00
1d [$£p-24], %ol
call printf, O
mov %gl, %i0

ret

C code compiled to assembly language (x86)

#include <stdio.h> LL2: leal -4 (%ebp) , %eax
main() { movl %eax, 4(%esp)
int num, sum = 0; movl $.LCO, (%esp)
call scanf
. cmpl $-1, %eax
while (scanf("%d", &num) !'= -1 je 13
&& num != 0) cmpl $0, -4 (%ebp)
sum = sum + num; je L3
printf ("%d\n", sum); movl -4 (%ebp), %edx
} leal -8 (%ebp), %eax
addl %$edx, (%eax)
jmp .L2
.L3: movl -8 (%ebp) , %eax
movl %eax, 4 (%esp)
movl $.LC1, (%esp)
call printf
leave
ret

Evolution of programming languages, 1980's

- "object-oriented" languages: C++
- better control of structure of really large programs
better internal checks, organization, safety
- aprogram ("compiler", "translator") converts into assembler or C
- enormous advantages:
portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

#include <iostream>
main() {

int num, sum = 0;

while (cin >> num && num !'= 0)
sum += num;
cout << sum << endl;

Evolution of programming languages, 1990's

- "scripting", Web, component-based, ...:
Java, Perl, Python, Visual Basic, Javascript, ...
- write big programs by combining components already written
- often based on "virtual machine": simulated, like fancier toy computer
- enormous advantages:

portable: same program can be translated for different machines
faster, cheaper hardware helps make this happen

var sum = 0, num; // javascript
num = prompt ("Enter new value, or 0 to end")
while (num '= 0) {
sum = sum + parselnt (num)
num = prompt ("Enter new value, or 0 to end")
}

alert("Sum = " + sum)

Evolution of programming languages, 2000's

so far, more of the same
- more specialized languages for specific application areas
Flash/Actionscript for animation in web pages
- ongoing refinements / evolution of existing languages
C, C++, Fortran, Cobol all have new standards in last few years

+ copycat languages
- Microsoft C# strongly related to Java
- scripting languages similar to Perl, Python, et al

better tools for creating programs without as much programming
- mixing and matching components from multiple languages

Why so many programming languages?

+ every language is a tradeoff among competing pressures
- reaction to perceived failings of others; personal taste
notation is important

- "Language shapes the way we think and determines what we can
think about."
Benjamin Whorf

- the more natural and close to the problem domain, the easier it is to
get the machine to do what you want

higher-level languages hide differences between machines and
between operating systems

we can define idealized “"machines" or capabilities and have a
program simulate them -- "virtual machines"

- programming languages are another example of Turing equivalence

