

Real processors

- multiple accumulators (called "registers")
- more instructions, though basically the same kinds
- typical CPU has dozens to few hundreds of instructions in repertoire
- instructions and data usually occupy multiple memory locations - typically 2-8 bytes
- modern processors have several "cores" that are all CPUs on the same chip

The CPU: real machines - Outline

- computer architecture
- CPU instructions
- interaction with memory
- caching: making things seem faster than they are
- how chips are made
- Moore's law
- equivalence of all computers
- von Neumann, Turing

Typical instructions

move data of various kinds and sizes

- load a register from value stored in memory
- store register value into memory
- arithmetic of various kinds and sizes:
- add, subtract, etc., usually operating on registers
- comparison, branching
- select next instruction based on results of computation - change the normal sequential flow of instructions
- normally the CPU just steps through instructions in successive memory locations
control rest of computer

Computer architecture

- what instructions does the CPU provide?
- CPU design involves complicated tradeoffs among functionality, speed, complexity, programmability, power consumption, ...
- Intel and PowerPC are unrelated, totally incompatible
- Intel: lot more instructions, many of which do complex operations e.g., add two memory locations and store result in a third
- PowerPC: fewer instructions that do simpler things, but faster e.g., load, add, store to achieve same result
- how is the CPU connected to the RAM and rest of machine?
- memory is the real bottleneck; RAM is slow (60-70 nsec to fetch) - modern computers use a hierarchy of memories so that frequently used information is accessible to CPU without going to memory - Called caches

Physical implementation (microprocessors)

Integrated circuits ("chips")

- Active elements and wires all made at same time out of same materials
- Match in size and speed

- Active elements

- Transistors - act as controlled switches Logically much like 1940s relays but not physically
- 1-bit memory elements (volatile)
- Chips packaged and connected to "pins" that plug in to printed circuit board

Fabrication: making chips

- grow layers of conducting and insulating materials on a thin wafer of very pure silicon
- each layer has intricate pattern of connections - created by complex sequence of chemical and photographic processes
- dice wafer into individual chips, put into packages
- yield is less than 100%, especially in early stages
- how does this make a computer?
- when conductor on one layer crosses one on lower layer voltage on upper layer controls current on lower layer
- this creates a transistor that acts as off-on switch that can control what happens at another transistor
wire widths keep getting smaller: more components in given area - today 0.032 micron $=32$ nanometers

1 micron $==1 / 1000$ of a millimeter (human hair is about 100 microns)

- eventually this will stop, but has been "10 years from now" for a long time

The bigger picture: universal computing machines

Turing machines

Alan Turing *38
showed that a simple model of a computer was universal

- now called a Turing machine
- looks nothing like our microprocessor
- all computers have the same computational power
- i.e., they can compute the same things
- though they may vary enormously in speed, memory used, etc.
- equivalence proven / demonstrated by simulation
- any machine can simulate any other
- a "universal Turing machine" can simulate
any other Turing machine
- see also
- Turing test
- Turing award

Computing machines wrap-up: Fundamental ideas

- a computer is a general-purpose machine
- executes very simple instructions very quickly
- controls its own operation according to computed results
- "von Neumann architecture"
- change what it does by putting new instructions in memory
- instructions and data stored in the same memory
- indistinguishable except by context attributed to von Neumann (1946) (and Charles Babbage, in the Analytical Engine (1830's))
- logical structure largely unchanged for 60+ years
- physical structures changing very rapidly
- Turing machines
- all computers have exactly the same computational power: they can compute exactly the same things; differ only in performance
- one computer can simulate another computer
\qquad

Additional Important Hardware Ideas

- Microprocessors have simple instructions that do arithmetic, compare items, select next instruction based on results
- bits at the bottom
- everything ultimately reduced to representation in bits (binary numbers)
- groups of bits represent larger entities: numbers of various sizes, letters in various character sets, instructions, memory addresses
- interpretation of bits depends on context
one person's instructions are another's data
- there are many things that we do not know how to represent as bits, nor how to process by computer

