The CPU:
real machines

The CPU: real machines - Outline

+ computer architecture
- CPU instructions
- interaction with memory
+ caching: making things seem faster than they are

+ how chips are made
+ Moore's law

+ equivalence of all computers
- von Neumann, Turing

Real processors

multiple accumulators (called "registers")

more instructions, though basically the same kinds

- typical CPU has dozens to few hundreds of instructions in
repertoire

instructions and data usually occupy multiple memory locations
- typically 2 - 8 bytes

modern processors have several "cores" that are all CPUs
on the same chip

Typical instructions

move data of various kinds and sizes
- load a register from value stored in memory
- store register value info memory
arithmetic of various kinds and sizes:
- add, subtract, efc., usually operating on registers
* comparison, branching
- select next instruction based on results of computation
= change the normal sequential flow of instructions

= normally the CPU just steps through instructions in
successive memory locations

control rest of computer

Computer architecture

+ what instructions does the CPU provide?
- CPU design involves complicated tradeoffs among functionality,
speed, complexity, programmability, power consumption, ...
- Intel and PowerPC are unrelated, totally incompatible
= Intel: lot more instructions, many of which do complex operations
e.g., add two memory locations and store result in a third
= PowerPC: fewer instructions that do simpler things, but faster
e.g., load, add, store to achieve same result

- how is the CPU connected to the RAM

and rest of machine?
- memory is the real bottleneck; RAM is slow (60-70 nsec to fetch)
= modern computers use a hierarchy of memories so that frequently
used information is accessible to CPU without going to memory
= Called caches

Computer architecture, continued

- what tricks do designers play to make it go faster?

overlap fetch, decode, and execute so several instructions are in
various stages of completion (pipeline)

do several instructions in parallel
do instructions out of order to avoid waiting
multiple "cores" (CPUs) in one package to compute in parallel

- speed comparisons are hard, not very meaningful

Physical implementation (microprocessors)

Integrated circuits (“chips”)

- Active elements and wires all made at same time
out of same materials
- Match in size and speed

+ Active elements
- Transistors - act as controlled switches
Logically much like 1940s relays but not physically
- 1-bit memory elements (volatile)

+ Chips packaged and connected to "pins” that plug in
to printed circuit board

Fabrication: making chips

grow layers of conducting and insulating materials on a thin
wafer of very pure silicon
each layer has intricate pattern of connections
- created by complex sequence of chemical and photographic processes
dice wafer into individual chips, put into packages
- vyield is less than 100%, especially in early stages
how does this make a computer?
- when conductor on one layer crosses one on lower layer
voltage on upper layer controls current on lower layer
- this creates a transistor that acts as off-on switch
that can control what happens at another transistor
wire widths keep getting ller: more ¢
- today ~0.032 micron = 32 nanometers
1 micron == 1/1000 of a millimeter (human hair is about 100 microns)
- eventually this will stop, but has been "10 years from now" for a long time

p ts in given area

Moore's Law (1965, Gordon Moore, founder & former CEO of Intel)

computing power (roughly, number of transistors on a chip)
- doubles about every 18 months
- and has done so since ~1961

consequences
- cheaper, faster, smaller, less power consumption per unit
- ubiquitous computers and computing

+ limits to growth
- fabrication plants now cost $2-4B; most are elsewhere
- line widths are nearing fundamental limits (10 more years?)
- complexity is increasing

maybe some other technology will come along
- atomic level; quantum computing

- optical

- biological: DNA computing

The bigger picture: universal computing machines

Turing machines

Alan Turing *38

showed that a simple model of a computer was universal
- now called a Turing machine

- looks nothing like our microprocessor

all computers have the same computational power

- i.e., they can compute the same things

- though they may vary enormously in speed, memory used, etc.
equivalence proven / demonstrated by simulation

- any machine can simulate any other

- a"universal Turing machine" can simulate

any other Turing machine

see also

- Turing test

- Turing award

Computing machines wrap-up: Fundamental ideas

a computer is a general-purpose machine
- executes very simple instructions very quickly
- controls its own operation according to computed results
"von Neumann architecture"
- change what it does by putting new instructions in memory
- instructions and data stored in the same memory
- indistinguishable except by context
attributed to von Neumann (1946)
(and Charles Babbage, in the Analytical Engine (1830's))
- logical structure largely unchanged for 60+ years
- physical structures changing very rapidly
Turing machines
- all computers have exactly the same computational power:
they can compute exactly the same things; differ only in performance
- one computer can simulate another computer
a program can simulate a computer

Additional Important Hardware Ideas

Microprocessors have simple instructions that do arithmetic,
compare items, select next instruction based on results
bits at the bottom

- everything ultimately reduced to representation in bits
(binary numbers)

- groups of bits represent larger entities: numbers of various
sizes, letters in various character sets, instructions, memory
addresses

- interpretation of bits depends on context

one person's instructions are another's data

there are many things that we do not know how to represent
as bits, nor how to process by computer

