
1

The CPU:
real machines

The CPU: real machines - Outline

•  computer architecture
–  CPU instructions
–  interaction with memory

•  caching: making things seem faster than they are

•  how chips are made
•  Moore's law

•  equivalence of all computers
–  von Neumann, Turing

Real processors

•  multiple accumulators (called "registers")

•  more instructions, though basically the same kinds
–  typical CPU has dozens to few hundreds of instructions in

repertoire

•  instructions and data usually occupy multiple memory locations
–  typically 2 - 8 bytes

•  modern processors have several "cores" that are all CPUs
 on the same chip

Typical instructions

•  move data of various kinds and sizes
–  load a register from value stored in memory
–  store register value into memory

•  arithmetic of various kinds and sizes:
–  add, subtract, etc., usually operating on registers

•  comparison, branching
–  select next instruction based on results of computation

  change the normal sequential flow of instructions
  normally the CPU just steps through instructions in

successive memory locations
•  control rest of computer

Computer architecture

•  what instructions does the CPU provide?
–  CPU design involves complicated tradeoffs among functionality,

speed, complexity, programmability, power consumption, …
–  Intel and PowerPC are unrelated, totally incompatible

  Intel: lot more instructions, many of which do complex operations
 e.g., add two memory locations and store result in a third

  PowerPC: fewer instructions that do simpler things, but faster
 e.g., load, add, store to achieve same result

•  how is the CPU connected to the RAM
and rest of machine?
–  memory is the real bottleneck; RAM is slow (60-70 nsec to fetch)

  modern computers use a hierarchy of memories so that frequently
   used information is accessible to CPU without going to memory
  Called caches

Computer architecture, continued

•  what tricks do designers play to make it go faster?
–  overlap fetch, decode, and execute so several instructions are in

various stages of completion (pipeline)
–  do several instructions in parallel
–  do instructions out of order to avoid waiting
–  multiple "cores" (CPUs) in one package to compute in parallel

•  speed comparisons are hard, not very meaningful

2

Physical implementation (microprocessors)

Integrated circuits (“chips”)
•  Active elements and wires all made at same time

out of same materials
–  Match in size and speed

•  Active elements
–  Transistors – act as controlled switches

Logically much like 1940s relays but not physically
–  1-bit memory elements (volatile)

•  Chips packaged and connected to “pins” that plug in
to printed circuit board

Fabrication: making chips

•  grow layers of conducting and insulating materials on a thin
 wafer of very pure silicon
•  each layer has intricate pattern of connections

–  created by complex sequence of chemical and photographic processes
•  dice wafer into individual chips, put into packages

–  yield is less than 100%, especially in early stages
•  how does this make a computer?

–  when conductor on one layer crosses one on lower layer
 voltage on upper layer controls current on lower layer
–  this creates a transistor that acts as off-on switch
 that can control what happens at another transistor

•  wire widths keep getting smaller: more components in given area
–  today ~0.032 micron = 32 nanometers

 1 micron == 1/1000 of a millimeter (human hair is about 100 microns)
–  eventually this will stop, but has been "10 years from now" for a long time

Moore's Law (1965, Gordon Moore, founder & former CEO of Intel)
•  computing power (roughly, number of transistors on a chip)

–  doubles about every 18 months
–  and has done so since ~1961

•  consequences
–  cheaper, faster, smaller, less power consumption per unit
–  ubiquitous computers and computing

•  limits to growth
–  fabrication plants now cost $2-4B; most are elsewhere
–  line widths are nearing fundamental limits (10 more years?)
–  complexity is increasing

•  maybe some other technology will come along
–  atomic level; quantum computing
–  optical
–  biological: DNA computing

The bigger picture: universal computing machines

Turing machines

•  Alan Turing *38
•  showed that a simple model of a computer was universal

–  now called a Turing machine
–  looks nothing like our microprocessor

•  all computers have the same computational power
–  i.e., they can compute the same things
–  though they may vary enormously in speed, memory used, etc.

•  equivalence proven / demonstrated by simulation
–  any machine can simulate any other
–  a "universal Turing machine" can simulate

any other Turing machine

•  see also
–  Turing test
–  Turing award

Computing machines wrap-up: Fundamental ideas

•  a computer is a general-purpose machine
–  executes very simple instructions very quickly
–  controls its own operation according to computed results

•  "von Neumann architecture"
–  change what it does by putting new instructions in memory
–  instructions and data stored in the same memory
–  indistinguishable except by context

attributed to von Neumann (1946)
 (and Charles Babbage, in the Analytical Engine (1830's))

–  logical structure largely unchanged for 60+ years
–  physical structures changing very rapidly

•  Turing machines
–  all computers have exactly the same computational power:
 they can compute exactly the same things; differ only in performance
–  one computer can simulate another computer

a program can simulate a computer

Additional Important Hardware Ideas

•  Microprocessors have simple instructions that do arithmetic,
compare items, select next instruction based on results

•  bits at the bottom
–  everything ultimately reduced to representation in bits

(binary numbers)
–  groups of bits represent larger entities: numbers of various

sizes, letters in various character sets, instructions, memory
addresses

–  interpretation of bits depends on context
one person's instructions are another's data

•  there are many things that we do not know how to represent
as bits, nor how to process by computer

