
1

The Central Processing Unit
better known as

 The
CPU

Today: Inside the CPU

•  how does the CPU work?
–  what operations can it perform?
–  how does it perform them? on what kind of data?
–  where are instructions and data stored?

•  some short, boring programs
–  illustrate the basics

•  a simplified machine: the “toy machine”
–  to try the short, boring programs

•  a program that simulates the toy machine
–  so we can run programs written for the toy machine

Block diagram of computer

•  CPU can perform a small set of basic operations
–  arithmetic: add, subtract, multiply, divide, …
–  memory access: fetch data from memory, store results back in

memory
–  decision making: compare numbers, letters, …, and decide what to

do next according to result
–  control the rest of the

 machine

•  operates by performing
sequences of very
simple operations very
fast

A simple "toy" computer (a "paper" design)

•  repertoire ("instruction set"): a handful of instructions

•  each RAM location holds one number or one instruction

•  CPU has one "accumulator" for arithmetic and input & output
–  a place to store one value temporarily

•  execution: CPU operates by a simple cycle
–  FETCH: get the next instruction from RAM
–  DECODE: figure out what it does
–  EXECUTE: do the operation
–  go back to FETCH

•  programming: writing instructions to put into RAM and execute

Repertoire of simple "toy" computer includes

–  GET a number from keyboard and put it into the accumulator

–  PRINT number that's in the accumulator

•  accumulator contents don't change!

–  STORE the number that's in the accumulator into a specific RAM
location
•  accumulator doesn't change!

–  LOAD the number from a particular RAM location into the
accumulator
•  original RAM contents don't change!

–  ADD the number from a particular RAM location to the accumulator
value, put the result back in the accumulator
•  original RAM contents don't change!

Toy computer block diagram (non-artist's conception)

keyboard

Memory (RAM)

accumulator
display

LOAD STORE ADD

GET

PRINT

CPU

2

A program to print a number

 GET get a number from keyboard into accumulator
 PRINT print the number that's in the accumulator
 STOP

•  convert these instructions into numbers
•  put them into RAM starting at first location
•  tell CPU to start processing instructions at first location

•  CPU fetches GET, decodes it, executes it
•  CPU fetches PRINT, decodes it, executes it
•  CPU fetches STOP, decodes it, executes it

A program to add any two numbers

 GET get first number from keyboard into accumulator
 STORE NUM save value in RAM location labeled "NUM"
 GET get second number from keyboard into accumulator
 ADD NUM add value from NUM (1st number) to accumulator
 PRINT print the result (from accumulator)
 STOP
NUM --- a place to save the first number

•  questions:
–  how would you extend this to adding three numbers?
–  how would you extend this to adding 1000 numbers?
–  how would you extend this to adding as many numbers as there were?

Looping and testing and branching

•  we need a way to re-use instructions
•  add a new instruction to CPU's repertoire:

–  GOTO take next instruction from a specified RAM location
 instead of just using next location

•  this lets us repeat a sequence of instructions indefinitely

•  how do we stop the repetition?
•  add another new instruction to CPU's repertoire:

–  IFZERO if accumulator value is zero, go to specified location
 instead of using next location

•  these two instructions let us write programs that repeat
instructions until a specified condition becomes true

•  the CPU can change the course of a computation according to
the results of previous computations

Add up a lot of numbers and print the sum

Start GET get a number from keyboard
 IFZERO Show if number was zero, go to "Show"
 ADD Sum add Sum so far to new number
 STORE Sum store it back in Sum so far
 GOTO Start go back to "Start" to get the next number
Show LOAD Sum load sum into accumulator
 PRINT print result
 STOP
Sum 0 initial value set to 0 before program runs
 (by assembler)

Assembly languages and assemblers

•  assembly language: instructions specific to a particular machine
–  X86 (PC) family; PowerPC (older Macs); ARM (cellphones); ...
–  Shorthand for instructions humans can remember: LOAD, ADD, …

•  assembler: a program that converts a program into numbers
 for loading into RAM
•  handles clerical tasks

–  replaces instruction names (ADD) with corresponding numeric value
–  replaces labels (names for memory locations) with corresponding

numeric values: location "Start" becomes 0 or whatever
–  loads initial values into specified locations

•  terminology is archaic but still used

•  each CPU architecture has its own instruction format and one
 (or more) assemblers

A simulator for the toy computer

•  simulator is a program (software)

•  simulator reads a program written for the toy computer
–  toy computer would be hardware if we built it

•  simulator simulates what the toy computer would do

Is program written for toy computer program or data for simulator?

3

Toy machine's complete instruction repertoire:

 get read a number from the keyboard into accumulator

 print print contents of accumulator
 load Val load accumulator with Val (which is unchanged)
 store Lab store contents of accumulator into location labeled Lab
 add Val add Val to accumulator
 sub Val subtract Val from accumulator
 goto Lab go to instruction labeled Lab
 ifpos Lab go to instruction labeled Lab if accumulator ≥ 0 (non-negative)

 ifzero Lab go to instruction labeled Lab if accumulator is zero
 stop stop execution

 Num initialize this memory location to numeric value Num
 (once, before simulation starts)

 if Val is a name like Sum, it refers to a memory location with that label;
 if Val is a number like 17, that value is used literally

Summary

•  each memory location holds an instruction or a data value (or part)
•  instructions are encoded numerically

(so they look the same as data)
–  e.g., GET = 1, PRINT = 2, LOAD = 3, STORE = 4, …

•  can't tell whether a specific memory location holds an instruction
or a data value (except by context)
–  everything looks like numbers

•  CPU operates by a simple cycle
–  FETCH: get the next instruction from memory
–  DECODE: figure out what it does
–  EXECUTE: do the operation

move operands between memory and accumulator, do arithmetic, etc.
–  go back to FETCH

