

"part of an instruction for a computer to execute"

- instructions are just bits, stored in the same memory as data
- different kinds of computers use different bit patterns for their instructions
- laptop, cellphone, game machine, etc., all potentially different
- old powerPC CPU different from Intel CPU
- one program's instructions are another program's data - when you download a new program from the net, it's data - when you run it, it's instructions

Encoding sound

- need to measure intensity/loudness often enough and accurately enough that we can reconstruct it well enough
- higher frequency = higher pitch
- human ear can hear ~ 20 Hz to 20 KHz
- taking samples at twice the highest frequency is good enough (Nyquist)
- CD audio usually uses
- 44,100 samples / second
- accuracy of 1 in 65,536 (= $2^{\wedge} 16$) distinct levels
- two samples at each time for stereo
- data rate is $44,100 \times 2 \times 16 \mathrm{bits} /$ sample

$$
=1,411,200 \mathrm{bits} / \mathrm{sec}=176,400 \mathrm{bytes} / \mathrm{sec} \sim 10.6 \mathrm{MB} / \text { minute }
$$

- MP3 audio compresses by clever encoding and removal of sounds that won't really be heard
- data rate is $\sim 1 \mathrm{MB} /$ minute

Interpretation of bits depends on context

- meaning of a group of bits depends on how they are interpreted
- 1 byte could be
- 1 bit in use, 7 wasted bits (e.g., M/F in a database)
- 8 bits storing a number between 0 and 255
- an alphabetic character like W or + or 7
- part of a character in another alphabet or writing system (2 bytes)
- part of a larger number (2 or 4 or 8 bytes, usually)
- part of a picture or sound
- part of the location or address of something in memory
- part of an instruction for a computer to execute
- ...

Getting a binary representation of information

- the usual sequence:
- something (sound, pictures, text, instructions, ...) is converted into numbers by some mechanism
- the numbers can be stored, retrieved, processed, transmitted
- the numbers might be reconstituted into a version of the original
- for sound, pictures, other real-world values
- make accurate measurements
- convert them to numeric values

Analog versus Digital

- analog: "analogous" or "the analog of"
- smoothly or continuously varying values
- volume control, dimmer, faucet, steering wheel
- value varies smoothly with something else
- no discrete steps or changes in values
- small change in one implies
small change in another
- infinite number of possible values
- the world we perceive is largely analog - digital: discrete values
- only a finite number of different values
- a change in something results in sudden change from one discrete value to another digital speedometer, digital watch, push-button radio tuner, ... - values are represented as numbers

Transducers

- devices that convert from one representation to another
- microphone
- loudspeaker / earphones
- camera / scanner
- printer / screen
- mouse
- touch screen
- etc.
- something is usually lost by conversion (in each direction)
- the ultimate copy is not as good as the original

Representing letters as numbers

- what letters and other symbols are included?
- how many digits/letter?
- determined by how many symbols there are
- how do we disambiguate if symbols have different lengths?
- how do we decide whose encoding to use?
- the representation is arbitrary
- but everyone has to agree on it
- if they want to work together

Inherently Discrete values

- another kind of conversion
- letters are converted into numbers when you type on a keyboard
- the letters are stored (a Word document), retrieved (File/Open...), processed (paper is revised), transmitted (submitted by email)
- printed on paper
- letters and other symbols are inherently discrete
encoding them as numbers is just assigning a numeric value to each one, without any intrinsic meaning

Other alphabets

- what if we wanted Cyrillic or Hebrew instead of English?
- how do we handle a document with mixed Cyrillic and English?
- how do we interpret a string of digits?
- is this group of digits an English letter or a Cyrillic letter?
- what if we wanted to include Chinese?
- how many digits might it now take?

CJK Unified Ideographs
4EFF

Things to remember

- digital devices represent everything as numbers
- discrete values, not continuous or infinitely precise
- all modern digital devices use binary numbers (base 2)
- instead of decimal (base 10)
- it's all bits at the bottom
- a bit is a "binary digit", that is, a number that is either 0 or 1
- computers ultimately represent and process everything as bits
- groups of bits represent larger things
- numbers, letters, words, names, pictures, sounds, instructions, ...
- the interpretation of a group of bits depends on their context
- the representation is arbitrary; standards (often) define it
the number of digits used in the representation determines how many different things can be represented
- number of values $=$ base number of digits
- e.g., $10^{2}, 2^{10}$

Color

- TV \& computer screens use Red-Green-Blue (RGB) model
- each color is a combination of red, green, blue components - $R+G$ = yellow, $R+B=$ magenta, $B+G=$ cyan, $R+G+B=$ white
- for computers, color of a pixel is usually specified by three numbers giving amount of each color, on a scale of 0 to 255
- this is often expressed in hexadecimal so the three components can be specified separately (in effect, as bit patterns) - 000000 is black, FFFFFF is white
- printers, etc., use cyan-magenta-yellow (CMY[K])

