Bits, Bytes, and Representation of Information

Interpretation of bits depends on context

- meaning of a group of bits depends on how they are interpreted
- 1 byte could be
 - 1 bit in use, 7 wasted bits (e.g., M/F in a database)
 - 8 bits storing a number between 0 and 255
 - an alphabetic character like W or + or 7
 - part of a character in another alphabet or writing system (2 bytes)
 - part of a larger number (2 or 4 or 8 bytes, usually)
 - part of a picture or sound
- part of the location or address of something in memory - part of an instruction for a computer to execute

'part of an instruction for a computer to execute"

- instructions are just bits, stored in the same memory as data
- different kinds of computers use different bit patterns for their instructions
- laptop, cellphone, game machine, etc., all potentially different - old powerPC CPU different from Intel CPU
- one program's instructions are another program's data
- when you download a new program from the net, it's data
- when you run it, it's instructions

Getting a binary representation of information

the usual sequence:

- something (sound, pictures, text, instructions, ...) is converted into numbers by some mechanism
- the numbers can be stored, retrieved, processed, transmitted the numbers might be reconstituted into a version of the original
- for sound, pictures, other real-world values make accurate measurements
 - convert them to numeric values

Encoding sound

- need to measure intensity/loudness often enough and accurately enough that we can reconstruct it well enough
- higher frequency = higher pitch
- human ear can hear ~ 20 Hz to 20 KHz
 - taking samples at twice the highest frequency is good enough (Nyquist)
- · CD audio usually uses
 - 44,100 samples / second
 - accuracy of 1 in 65,536 (= 2^16) distinct levels
 - two samples at each time for stereo
 - data rate is 44,100 x 2 x 16 bits/sample
 - = 1,411,200 bits/sec = 176,400 bytes/sec ~ 10.6 MB/minute
- MP3 audio compresses by clever encoding and removal of sounds that won't really be heard

- data rate is ~ 1 MB/minute

Analog versus Digital analog: "analogous" or "the analog of" - smoothly or continuously varying values - volume control, dimmer, faucet, steering wheel 20 40 60 80 - value varies smoothly with something else 10 • no discrete steps or changes in values 100 -20 • small change in one implies 120 -40 small change in another -60 140 • infinite number of possible values - the world we perceive is largely analog digital: discrete values - only a finite number of different values - a change in something results in sudden change from one discrete value to another digital speedometer, digital watch, push-button radio tuner,

- values are represented as numbers

Transducers

- · devices that convert from one representation to another
 - microphone
 - loudspeaker / earphones
 - camera / scanner
 - printer / screen
 - mouse
 - touch screen
 - etc.
- something is usually lost by conversion (in each direction)
 the ultimate copy is not as good as the original

Inherently Discrete values

- another kind of conversion
 - letters are converted into numbers when you type on a keyboard
 the letters are stored (a Word document), retrieved (File/Open...), processed (paper is revised), transmitted (submitted by email)
 - printed on paper
- · letters and other symbols are inherently discrete
- encoding them as numbers is just assigning a numeric value to each one, without any intrinsic meaning

Representing letters as numbers

- what letters and other symbols are included?
- how many digits/letter?
 - determined by how many symbols there are
 how do we disambiguate if symbols have different lengths?
- how do we decide whose encoding to use?
- the representation is arbitrary
- \cdot but everyone has to agree on it
 - if they want to work together

ASCII (hex encoding)

	0	1	2	3	4	5	6	7	8	9	۸	в	С	D	Ε	F
0	NUL	SOH	ѕтх	ЕТΧ	EOT	ENQ	ACK	BEL	BS	ΗT	LF	VT	FF	CR	SO	SI
1	DLE	DC 1	DC2	DC3	DC4	NAK	SYN	ЕТΒ	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SPC	!	н	#	\$	%	3	1	()	*	+	,	-		7
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	@	A	B	С	D	Ε	F	G	Η	I	J	K	L	Μ	N	0
5	Ρ	Q	R	S	Т	U	IJ	W	X	Y	Ζ	Ι	١]	^	_
6	ì	а	b	C	d	e	f	g	h	i	j	k	I	m	n	0
7	р	q	r	S	t	u	υ	W	х	y	z	{	I	}	~	DEL
	_ •-									3		•				

Other alphabets

- what if we wanted Cyrillic or Hebrew instead of English?
- \cdot how do we handle a document with mixed Cyrillic and English?
- how do we interpret a string of digits?
 is this group of digits an English letter or a Cyrillic letter?
- what if we wanted to include Chinese?
 how many digits might it now take?

2	4E00		CJK Unified Ideographs													4EFF
	4E0	4E1	4E2	4E3	4E4	4E5	4E6	4E7	4E8	4E9	4EA	4EB	4EC	4ED	4EE	4EF
0		丐	北.	丰	1	乐	习	买	亀	亏	4540	亰	什	个	任	仰
1		4€11	石 山 4E21	业 4E31	ال	不	451	乱 #71	乾	<u>二</u> 481	亡 454	在 4EB1		仑 4ED1	佗	仱
2	丂 4E02	<u>刃</u> 4E12	丢	串 4632	X 4542	乒 #52	4E62	次乙酮	受 Eliz	互. 4892	亢 4EA2	亲 ⁴⁸²	仂 4EC2	く、 4ED2	伯	仲
3	上 4E03	专	丣 4E23	丳 €33	乃 4543	乓 ®	<u>劣</u> し 4E63	乳	<u>満</u>	<u>亓</u> 4E93	亣 4543	毫 4EB3	仃	仓 4ED3	代	化
4	4504	<u>H</u> .	两 4E24	临	X 4544	乔	下 4654	哲	亄 4534	<u> </u>	交	亴 ≝#	仄	仔	\$ (E)	仴
5	4506	<u>不</u> 4E15	<u>) 1</u> 4E25	<u>半</u> Æ35	久 4545	乕	12	乵 4E75	4E85	井 4895	亥	亵 #85	仅	仕	以 ÆES	作
6	ナ 4E06	∰: 4E16	並. 4E26	4 E36	头 4546	乖 455	书 4655	乶	了 4E36	4896	亦 4546	直	仆 4EC6	他 4ED6	仦	件 48F6

	Cuneiform (from unicode.org)													
	1200	1201	1202	1203	1204	1205	1206	1207	1208	1209	120A	120B	120C	120D
0	12000	12010	12020	ङब्ध्∽dice 12030	区 12040	12050	12060	2070	武 12080	12090	道 120A0	120B0	新子 120C0	第二 120D0
1	Ĭ₩	12011	12021	**************************************	► 12041	12051	I⇒¢⊃≪ 12061	12071	12081	12091	口 120A1	120B1	新日 120C1	120D1
2	۴Ť	12012	₩¥	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	###	44		A		12002		t∰1		▶ 新工
3	12002 FSF			洞		12052) E	12062) T	titt	u∰⊐	क्रम	A A A A A A A A A A A A A A A A A A A
4	12003	12013	12023	12033	12043 ►►►€	12053 ►⊅►₹	12063	12073	12083	12093		120B3	120C3	120D3
	12004	12014	12024	12034	12044	12054	12064	12074	12084	12094	120A4	120B4	120C4	120D4
5	梸	Ħ	嘲嘲	ł	**	Ħ		нDø	ĨĿ	T	d∰⊐	齡		Þ
	12005	12015	12025	12035	12045	12055	12065	12075	12085	12095	120A5	120B5	120C5	120D5

Things to remember

- digital devices represent everything as numbers discrete values, not continuous or infinitely precise
- all modern digital devices use binary numbers (base 2)
- instead of decimal (base 10)
- it's all bits at the bottom
 - a bit is a "binary digit", that is, a number that is either 0 or 1
 - computers ultimately represent and process <u>everything</u> as bits groups of bits represent larger things
 - numbers, letters, words, names, pictures, sounds, instructions, ... - the interpretation of a group of bits depends on their context
 - the representation is arbitrary; standards (often) define it
- the number of digits used in the representation determines how many different things can be represented - number of values = base number of digits
 - e.g., 10², 2¹⁰

.