Today:
 Everything is numbers \longrightarrow Everything is bits

1. Representing numbers as bits
2. Representing information as numbers more detail

Important ideas

- number of items and number of digits are tightly related: - one determines the other
- maximum number of different items = base number of digits
- e.g., 9-digit SSN: $10^{9}=1$ billion possible numbers
- e.g., to represent up to 100 "characters": 2 digits is enough
- but for 1000 characters, we need 3 digits
- interpretation depends on context
- without knowing that, we can only guess what things mean
- what's 81615?

Why binary, from von Neumann's paper:

5.2. In a discussion of the arithmetical organs of a computing machine one is naturally led to a consideration of the number system to be adopted. In spite of the longstanding tradition of building digital machines in the decimal system, we feel strongly in favor of the binary system for our device. Our fundamental unit of memory is naturally adapted to the binary system since we do not attempt to measure gradations of charge at a particular point in the Selectron but are content to distinguish two states.
The flip-flop again is truly a binary device. On magnetic wires or tapes and in acoustic delay line memories one is also content to recognize the presence or absence of a pulse or (if a carrier frequency is used) of a pulse train, or of the sign of a pulse. (We will not discuss here the ternary possibilities of a positive-or-negative-or-no-pulse system and their relationship to questions of reliability and checking,

A review of how decimal numbers work

- how many digits?
- we use 10 digits for counting: "decimal" numbers are natural for us
- other schemes show up in some areas clocks use $12,24,60$; calendars use 7,12 other cultures use other schemes (quatre-vingts)
what if we want to count to more than 10 ?
- 0123456789

1 decimal digit represents 1 choice from 10; counts 10 things; 10 distinct values

- 000102 ... 101112 ... 202122 ... 9899 2 decimal digits represents 1 choice from 100; 100 distinct values we usually elide zeros at the front
- 000001 ... 099100101 ... 998999 3 decimal digits ...
- decimal numbers are shorthands for sums of powers of 10 - $1492=1 \times 1000+4 \times 100+9 \times 10+2 \times 1$
$=1 \times 10^{3}+4 \times 10^{2}+9 \times 10^{1}+2 \times 10^{0}$
counting in "base 10", using powers of 10

Binary numbers: using bits to represent numbers

- just like decimal except there are only two digits: 0 and 1
- everything is based on powers of $2(1,2,4,8,16,32, \ldots)$ - instead of powers of $10(1,10,100,1000, \ldots)$
- counting in binary or base 2 :

01
1 binary digit represents 1 choice from 2; counts 2 things; 2 distinct values
00011011
2 binary digits represents 1 choice from 4; 4 distinct values 000001010011100101110111

3 binary digits

- binary numbers are shorthands for sums of powers of 2
$11011=1 \times 16+1 \times 8+0 \times 4+1 \times 2+1 \times 1$
$=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
- counting in "base 2^{2} ", using powers of 2

Using bits to represent information

- M/F or on/off
- $\mathrm{Fr} / \mathrm{So} / \mathrm{Jr} / \mathrm{Sr}$
- add grads, auditors, faculty
- a number for each student in 109
- a number for each freshman at PU
- a number for each undergrad at PU

Number of items represent with n bits?
Largest magnitude represent with n bits?

13th century wine units

```
2 gills = 1 chopin
chopins = 1 pint
2 pints = 1 quart
quarts = 1 pottle
pottles = 1 gallon
2 gallons = 1 peck
pecks = 1 demibushel
2 demibushels = 1 bushel or firkin
firkins = 1 kilderkin
kilderkins = 1 barrel
2 barrels = 1 hogshead
hogspeads = 1 pipe
2 pipes = 1 tun
```

 - from D E Knuth, The Art of Computer Programming, v 2

Bytes

- "byte" = group of 8 bits

- on modern machines, the fundamental unit of processing and memory addressing
- can encode any of $2^{8}=256$ different values, e.g: - numbers 0 .. 255 or
- a single letter like A or digit like 7 or punctuation like $\$$
- ASCII character set defines values for letters, digits, punctuation, etc.
- group 2 bytes together to hold larger entities
- two bytes (16 bits) holds $2^{16}=65536$ values
- a bigger integer, a character in a larger character set Unicode character set defines values for almost all characters anywhere

Bytes cont.

- group 4 bytes together to hold even larger entities
- four bytes (32 bits) holds $2^{32}=4,294,967,296$ values
- an even bigger integer,
- a number with a fractional part (floating point).
- a memory address
- etc.
- recent machines use 64 -bit integers and addresses (8 bytes) $2^{64}=18,446,744,073,709,551,616$

Interpretation of bits depends on context

- meaning of a group of bits depends on how they are interpreted 1 byte could be
- 1 bit in use, 7 wasted bits (e.g., M/F in a database)
- 8 bits storing a number between 0 and 255
- an alphabetic character like W or + or 7
- part of a character in another alphabet or writing system (2 bytes)
- part of a larger number (2 or 4 or 8 bytes, usually)
- part of a picture or sound
- part of an instruction for a computer to execute
- instructions are just bits, stored in the same memory as data
- different kinds of computers use different bit patterns for their instructions
laptop, cellphone, game machine, etc., all potentially different - part of the location or address of something in memory
- ...
- one program's instructions are another program's data
- when you download a new program from the net, it's data
- when you run it, it's instructions

```
Powers of two, powers of ten
    1 bit = 2 possibilities
    2 bits = 4 possibilities
    3 bits = 8 possibilities
    n bits = 2n
    2}\mp@subsup{2}{}{10}=1,024\mathrm{ is about 1,000 or 1K or 10
    2}20=1,048,576 is about 1,000,000 or 1M or 106
```



```
        the approximation is becoming less good
        but it's still good enough for estimation
    terminology is often imprecise:
        - " 1K " might mean 1000 or 1024 (103 or 2'0)
        " " 1M " might mean 1000000 or 1048576 (106 or 220)
```


Converting between binary and decimal (version 1)

- binary to decimal:
$1101=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}$
$=1 \times 8+1 \times 4+0 \times 2+1 \times 1$
$=13$
- decimal to binary:
- start with largest power of 2 smaller than the number
- for each power of 2 down to 2^{0}
- if you can subtract that power of 2 , do so and write "1"
- otherwise write "0"
- start with 13 , subtract 8 , write "1"
- with 5 , subtract 4 , write "1"
- with 1, can't subtract 2, write "0"
- with 1, subtract 1, write "1"
- answer is 1101

Hexadecimal notation

- binary numbers are bulky
- repeat while the number is >0
- divide the number by 2
- write the remainder (0 or 1)
- use the quotient as the number and repeat
- answer is the resulting sequence in reverse (right to left) order
- divide 13 by 2 , write " 1 ", number is 6
- divide 6 by 2 , write " 0 ", number is 3
- divide 3 by 2 , write " 1 ", number is 1
- divide 1 by 2 , write " 1 ", number is 0
- answer is 1101

Example:

- 10100110110110
- hexadecimal notation is a shorthand
- it combines 4 bits into a single digit, written in base 16 - a more compact representation of the same information
- hex uses the symbols $A B C D E F$ for the digits 10 .. 15 0123456789 A B CDEF

0	0000	1	0001	2	0010	3	0011
4	0100	5	0101	6	0110	7	0111
8	1000	9	1001	A	1010	B	1011
C	1100	D	1101	E	1110	F	1111

