Please be succinct, and give a proof sketch rather than gory details.

1. What is the expected number of triangles in $G(n, p)$ when you plant a random clique of size k in it? Try to prove concentration of this quantity.

2. Let the Frobenius norm of a real symmetric $n \times n$ matrix M, denote $|M|_F^2$, be defined as the sum of squares of its entries. Let its spectral norm, denoted $|M|$, be the magnitude of the largest eigenvalue. Show that if M has rank k then $|M|_F^2 \leq k|M|^2$.

3. Suppose M is an $n \times n$ symmetric matrix and u_1, u_2, \ldots, u_k are the eigenvectors corresponding to its k largest eigenvalues (in absolute value). Let \hat{M} be the matrix obtained by replacing each column of M by its projection in the k-dimensional subspace spanned by u_1, u_2, \ldots, u_k. Note that \hat{M} has rank at most k. Show that for every matrix X of rank k, $|M - \hat{M}| \leq |M - X|$.

4. The trace of a matrix, denoted $Tr(M)$, is the sum of its diagonal entries. Show that for every real symmetric matrix, $\lim_{k \to \infty} Tr(M^{2k})^{1/2k}$ exists and is equal to $|M|$. (Here the limit is taken over integral k.)