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Vote-specific parameters are often by-products of roll call analysis, the primary goal be-
ing the measurement of legislators’ ideal points. But these vote-specific parameters are
more important in higher-dimensional settings: prior restrictions on vote parameters help
identify the model, and researchers often have prior beliefs about the nature of the dimen-
sions underlying the proposal space. Bayesian methods provide a straightforward and
rigorous way for incorporating these prior beliefs into roll call analysis. I demonstrate this
by exploiting the close connections among roll call analysis, item–response models, and
“full-information” factor analysis. Vote-specific discrimination parameters are equivalent
to factor loadings, and as in factor analysis, they (1) enable researchers to discern the
substantive content of the recovered dimensions, (2) can be used for assessing dimen-
sionality and model checking, and (3) are an obvious vehicle for introducing and testing
researchers’ prior beliefs about the dimensions. Bayesian simulation facilitates these uses
of discrimination parameters, by simplifying estimation and inference for the massive num-
ber of parameters generated by roll call analysis.

1 Introduction

IT IS WELL KNOWN that the analysis of roll call data generally results in statistical models
with many parameters. Operationalizing the D-dimensional Euclidean spatial voting model
(Enelow and Hinich 1984) with roll call data from n legislators over m roll calls generates
a statistical model with nD +m(D + 1) parameters. For instance, fitting a unidimensional
model to data from a recent U.S. Senate (n = 100, m ≈ 500) creates a 1100-parameter
problem (100 ideal points and 500 × 2 proposal parameters), while a two-dimensional model
has 1700 parameters. Likelihood-based estimation and inference with this many parameters
remain formidable even with the computing power now available to social scientists.1

Author’s note: I thank John Londregan, Adam Mierowitz, Keith Poole, and, especially, my collaborators on this
project, Joshua Clinton and Doug Rivers, for helpful discussion and comments. Errors and omissions remain my
own responsibility.
1Direct MLE may be feasible with data sets that are small relative to the data sets generated by the contemporary
U.S. Congress. For instance, see Londregan’s (2000b) analyses of committees in the Chilean legislature, where
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In a recent article in Political Analysis (Jackman 2000) I reported on recent work with
Joshua Clinton and Doug Rivers, where we use Bayesian simulation (Markov chain Monte
Carlo methods) to simplify estimation and inference for the large number of parameters
arising in roll call analysis. In my earlier article I focused on the issue of inferences for
legislators’ ideal points in a unidimensional setting. Here I show how the Bayesian approach
helps us deal with the added complexities of moving to higher-dimensional contexts. First,
identification, estimation, and inference for ideal points become more complicated in the
higher-dimensional setting, and I show how each task is accomplished in a Bayesian setting.

Second, I show how the proposal parameters assume more importance when we shift
to higher dimensional settings. In most roll call analyses, proposal parameters are often
considered nuisances, since the usual goal is measuring legislator’s ideal points, so much
so that the statistical analysis of roll call data is often referred to as “legislative scaling.”
In the Bayesian approach there is no real distinction between either type of parameter
(legislators’ ideal points or proposal-specific parameters), and Bayesian simulation methods
easily provide estimates and inferences for both sets of parameters; contrast likelihood-based
approaches that marginalize with respect to one set of parameters so as to obtain estimates
and inference for the others (e.g., Bock and Aitken 1981). I show below that proposal
parameters are analogous to factor loadings and can be put to the same uses as factor loadings.
These include determining the qualitative nature of recovered dimensions (as in exploratory
factor analyses) or a means for researchers either to impose or to test conjectures about the
nature of the underlying dimensions (as in confirmatory factor analyses). I develop some
diagnostics for assessing dimensionality based on the proposal parameters. In short, my
goal here is to use Bayesian simulation to make the analysis of roll call data less a technical
“scaling” exercise and more genuinely data analytic, in which researchers’ conjectures or
substantive expertise can alternately be tested, or used to guide the data analysis.

2 Operationalizing the Euclidean Spatial Voting Model

Assume a D-dimensional Euclidean proposal space. Each bill j = 1, . . . , m presents each
legislator i = 1, . . . , n with a choice between a Yea position, ζ j , and a Nay position ψ j .
The recorded votes (roll calls) are binary indicators: yi j = 1 if legislator i votes Aye on the
j th vote and yi j = 0 if legislator i votes Nay. The Euclidean spatial voting model drives
the development of a statistical model for these data: legislators receive utilities from ζ j

and ψ j declining in the squared distance of the these points from each ideal point xi . It is
well known that the statistical model implied by the Euclidean spatial voting model is the
following two-parameter item-response model, used extensively in the educational testing
literature:2

y∗
i j = Ui (ζ j ) − Ui (ψ j ) = β′

j xi − α j + εi j , (1)

with the censoring rule yi j = 1 ⇐⇒ y∗
i j > 0, otherwise yi j = 0. With the further assump-

tion εi j ∼ N (0, 1) we have a hierarchical probit model with the complication that the ideal
points xi appear as unobserved predictors in Eq. (1), to be estimated along with the proposal
parameters β j and α j .

n < 10 and (by assumption) the m(D + 1) proposal parameters are reduced to a dramatically smaller set of
proposer parameters.

2See Jackman (2000, pp. 317–323) and Londregan (2000a).
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Given our Bayesian approach, estimation and inference for this model amounts to com-
puting the posterior density π(θ | Y), θ = {X, B,α}, where X is an n × D matrix of
ideal points, B is an m × D matrix of discrimination parameters, and α is an m-vector
of intercepts (or item-difficulty parameters). A Gibbs sampler generates arbitrarily many
samples from this joint posterior density, which are then summarized for inference; a more
detailed description of the Gibbs sampler for this problem is given by Clinton et al. (2000),
drawing on work in the item–response context by Johnson and Albert (1999) and Albert
(1992).

Finally, note that the parameters α j and β j in Eq. (1) are functions of the unknown Yea
and Nay locations, ζ j andψ j . Without further identifying restrictions the proposal parame-
ters themselves cannot be uniquely recovered from α j and β j ,3 and instead we recover the
“indifference hyperplane,” the set of points equidistant from ζ j and ψ j . Researchers often
find it convenient to use these cutting planes when presenting results on specific sets of
votes (e.g., Pool and Rosenthal 1997, Chap. 7); my focus here is on the underlying proposal
parameters themselves.

3 Inference for Proposal-Specific Parameters

The most common goal of roll call analysis is measurement: estimation and inference for the
ideal points xi . Nonetheless, the slope parameters β j are substantively interesting in their
own right and are equivalent to item discrimination parameters in the item–response litera-
ture. In the legislative context it is also useful to think of theβ j as discrimination parameters,
literally tapping the extent to which the j th roll call discriminates among legislators along
the various dimensions of the proposal space. For instance, with a unidimensional model,
Eq. (1) is y∗

i j = β j xi − α j + εi j , and β j taps how change in xi translates into support for
proposal j . A plausible hypothesis is that support for proposal j is unrelated to movement
in xi (i.e., β j is indistinguishable from zero) or, in substantive terms, that support for pro-
posal j is unrelated to the underlying policy continuum. In fact, the substantive content of
proposals that have large and statistically significant β j supply the substantive content of
the underlying policy continuum.

Inspecting the discrimination parameters β j is thus extremely useful in assessing the
qualitative character of each dimension. But, in addition, the discrimination parameters also
let us assess the dimensionality of the proposal space. For instance, if a one-dimensional
model yields a large number of discrimination parameters indistinguishable from zero,
then the researcher might well be prompted to fit a higher-dimensional model. In addition,
those roll calls with insignificant discrimination parameters can be examined to help the
researcher determine the likely substantive content of the higher dimensions.

3.1 Discrimination Parameters as Factor Loadings

At this stage it is helpful to note a close connection between IRT models and factor analytic
models. Recall that in exploratory factor analysis (EFA), the researcher typically has weak
prior beliefs as to the substantive content of the dimensions underlying a set of variables.
The estimated factor loadings tell the researcher which variables are explained by which
dimension. In fact, in a genuinely exploratory factor analysis, variables with large factor

3See Clinton and Mierowitz (2001) for an example of assumptions that permit recovery of the Yea and Nay
proposal.
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loadings on dimension d supply the substantive content of that dimension. In this sense
discrimination parameters are extremely similar to factor loadings; the substantive content
of the dimensions recovered by an ideal point model is revealed by inspecting the proposals
that discriminate with respect to each dimension.

The similarities between multidimensional item–response (MIRT) models and factor
analytic models for binary data are well known (e.g., Takane and de Leeuw 1987; Reckase
1997), and indeed, MIRT is sometimes referred to as “full information item factor analysis”
(Bock et al. 1988).4 And in the specific context of roll call data, Heckman and Snyder
(1997) use factor analytic methods to estimate legislators’ preferences, although motivated
by a different set of assumptions than typically used in roll call analysis.5

The connection between MIRT and factor analysis is helpful in terms of interpreting the
model parameters and, in particular, how discrimination parameters help us discern the na-
ture of the recovered dimensions. But having noted this analogy, three important distinctions
between our MIRT model and a traditional factor analytic model warrant mention. First,
factor analysis is fundamentally a model for correlations and not a model of the individual
level responses. Factor analyses collapse individual level responses to form a correlation
matrix, discarding information about the means and the variances of the input variables.
Information is necessarily lost in this way, making it difficult to learn simultaneously about
the locations of legislators (the xi ) and properties of the proposals (the discrimination pa-
rameters β j and the difficulty parameters, α j ). Contrast the MIRT framework, where the
individual binary responses (the Yeas and Nays, yi j ) are modeled directly as functions of
the parameters of substantive interest.

Second, factor analytic models for binary data are much harder to estimate than traditional
factor analytic models presuming multivariate normal data; for example, see Heckman
and Snyder’s (1997, p. 161) discussion of the difficulties they encounter estimating their
factor analysis model with binary roll call data. In contrast, our IRT/MIRT model confronts
the binary character of roll call data directly, since it is a direct operationalization of the
presumed (binary) data generation mechanism, the Euclidean spatial voting model.

Third, in our Bayesian approach, we supply informative priors on certain β j to “prede-
fine” the specific dimensions. The factor analytic analogue is confirmatory factor analysis
(CFA), where researchers have beliefs about how specific variables relate to specific di-
mensions. As I show below, priors are especially helpful in resolving a second dimension
in the 105th U.S. Senate data.

4 Moving to Higher Dimensions: Identification Strategies

Almost all models for latent traits have unidentified parameters. The two-paramter IRT
model is no exception. In one dimension this is rather obvious: without any constraints on the
model parameters, pi j = F(xiβ j −α j ) = F(x∗

i β∗
j −α j ), where x∗

i = cxi and β∗
j = c−1β j ,

for any scaling factor c �= 0. That is, the model parameters (xi ,β j ) are not identified. Non-
Bayesian analyses of roll call data solve this scale invariance problem in two ways. Poole
and Rosenthal (1997) constrain their estimates of xi to lie in the [−1, 1]D hypercube.
Londregan (2000b) sets specific xi to fixed values, treating the corresponding legislators as
“reference legislators.” In the Bayesian context we solve this problem with a proper prior
density over the xi ; we specify xi

iid∼ N (0, ID), ∀i , or more formally, π(X) = ∏n
i=1φD(xi ),

4Moreover, the invention of maximum-likelihood factor analysis by Lawley in the early 1940s was in the context
of analyzing item–response data.

5Note that Heckman and Snyder construct their model so as to recover the ideal points xi as the factor loadings.
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whereφD is a D-dimensional standard normal density. These priors are innocuous in that
they solve the scale invariance problem and no more; each legislator is assigned the same
prior, and the selection of prior variance is arbitrary.

Precisely because these priors are so innocuous, the resulting posterior densities are
generally not unimodal. That is, while solving scale invariance, these priors do not rule out
rotational invariance. Again, consider the unidimensional case. Our priors do not preclude
multiplying all model parameters by −1, reversing the orientation of the recovered policy
dimension, but yielding an identical fit to the data. That is, the resulting posterior density
π(θ | Y) is a two-component mixture, one component with a mode atθ0 and another “mirror
image” component with a mode at −θ0; put differently, our priors ensure local identification,
not global identification (Bollen 1989, p. 248). In practice, this is not a problem for most
unidimensional models of roll calls. Our experience is that with (a) a reasonably large
number of roll calls and (b) reasonable discrimination along the underlying policy continuum
(as occurs in even mildly partisan legislatures), the two component modes are extremely
distant from one another, and the component densities are compact around their respective
modes. This gives us a choice of which mode to use for inferences; we choose the mode that
places Democrats on the left and Republicans on the right, in accord with widely accepted
senses of “left” and “right.”

Recall that we use a Gibbs sampler to explore this posterior density randomly; our
experience is that the sampler quickly moves from its starting values to one of these com-
ponent modes, and never visits the other component.6 Accordingly, a practical solution to
the rotational invariance problem is simply to start the Gibbs sampler with all Democratic
legislators on the left of the origin and all Republican legislators on the right. If the com-
ponents of the posteriors for all the ideal points were diffuse and centered close to zero,
then this strategy would be impractical (since the two components of the posterior could
not be clearly resolved), but this is seldom the case for roll call data sets. In short, the fact
that model parameters are unidentified is rarely of practical importance in unidimensional
settings.

But moving to two dimensions dramatically increases the number of observationally
equivalent rotations. We have just seen that in one dimension, our xi ∼ N (0, 1) prior
generates a bimodal posterior density. But in two dimensions, our priors xi ∼ N (0, ID)
admit eight observationally equivalent rotations; each dimension can be reversed, while
at the same time the dimensions can be swapped, yielding 2 × 2 × 2 = 8 rotations.7 Put
differently, the posterior density of any ideal point xi = (xi1, xi2)′ is a mixture of eight
component densities.

Figure 1 shows four possibilities for the case of D = 2, with each bivariate posterior
density shown as a surface in the left column and as a contour plot in the right column.
When the components are tightly distributed around their respective modes (as in the top
row in Fig. 1), it is easy to resolve the individual components, and researchers can simply
pick a mode for inference and communicating results to readers. But when the component
densities are not tightly distributed and overlap (lower panels in Fig. 1), the component
modes are no longer easily resolved and may disappear. As the precision of the posterior

6The Gibbs sampler is effectively “trapped” at the mode closest to its initial state, and the probability of jumping
the wide region of the parameter space separating the two modes (where the posterior density is essentially zero)
is extremely low and, hence, never occurs even in an extremely long run of the Gibbs sampler.

7Let the n × 2 matrix [a b] denote a joint mode of one of the components of the posterior for the ideal
points. Then the following points are also component modes: [a −b], [−a b], [−a −b], [b a], [b −a], [−b a],
and [−b, −a].
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Fig. 1 Rotational invariance and the posterior density for xi . Four posterior densities are shown
(surface plots in the left column, contour plots on the right). The posterior density for each xi is a
mixture of eight component densities (the mode of each component is marked with a filled dot in the
contour plots). If the components have low dispersion (i.e., the data are highly informative about the
ideal points), then the mode of each component is clearly resolved (top row). As the data become less
informative (moving down the page), the eight individual component densities are no longer apparent,
and the posterior density tends toward the N (0, ID) prior (bottom panels).
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components diminshes (i.e., the roll call data are increasingly uninformative about the ideal
points), we wind up with the limiting case seen in the bottom row in Fig. 1, a unimodal
bivariate density centered on the origin [i.e., the N (0, ID) prior].

Again, this lack of identification is of no substantive consequence if the data are highly
informative about the ideal points. But this is not always the case when fitting higher-
dimensional models to roll call data. If a unidimensional model provides a good fit to
the data, then it is quite likely that there is little information in the data about the second
dimension parameters. In this case there is a real risk that the posteriors for the ideal points
start to resemble the cases described in the lower panels in Fig. 1. This is especially relevant
given our use of a Gibbs sampler, which (if let run long enough) will visit each component
density and faithfully reproduce the mixture densities shown in Fig. 1. If the component
densities overlap then a naive use of a Gibbs sampler might result in the inferences that are
technically correct but substantively misleading. It is worth stressing that this can hardly be
considered a weakness of the Bayesian approach; this problem stems from the attempt to
estimate a model with unidentified parameters! If anything, the Bayesian approach lets us
see the nature of this problem more clearly, by focusing our attention on the entire posterior
density rather than on a search for local/global maxima.

In the Bayesian context, priors are an obvious way to reduce the number of compo-
nents in the posterior density. Legislator-specific priors are one way to proceed, say, by
specifying priors that constrain an Edward Kennedy to be on the “left” on one dimension
and, on that same dimension, a Jesse Helms constrained to be on the “right” (a Bayesian
analogue of Londregan’s “reference” legislator approach). Of course, this is harder to do
in higher dimensions, particularly when the researcher has only weak ideas as to the na-
ture of those dimensions or who might reasonably serve as reference legislators on those
dimensions.

Our preferred solution is to use informative priors on the discrimination parameters, β j .
That is, we treat various proposals as “reference proposals” for specific dimensions, with
the substantive content of those proposals providing an initial guess as to the nature of the
corresponding dimension. Only a small number of proposals need informative priors so
as to reduce the number of components in the posterior. For instance, consider priors that
make proposal j discriminate with respect to dimension 1 but provide no discrimination
in dimension 2 (β j1 > 0, β j2 = 0). Then if (a, b) is a posterior mode for xi = (xi1, xi2)′,
then (−a, b) and (−a, −b) cannot be posterior modes, since this would violate the a pri-
ori constraint that β j1 > 0. Likewise, any swapping of dimensions is ruled out by this
prior. This leaves (a, −b) as the only other possible posterior mode, which the researcher
can either (a) ignore, which is feasible if the two posterior modes are well separated and
easily resolved, or (b) eliminate via informative priors on another “reference proposal.”
In the next section I show how priors help fit a two-dimensional model to the 105th U.S.
Senate data.

5 Data: 105th U.S. Senate

I begin with a moderately large roll call data set analyzed by Jackman (2000): m = 486
nonlopsided roll calls from the 105th U.S. Senate, which sat from January 1997 through
October 1998.8 Estimates of each of the n = 100 senators’ ideal points (accompanied by
confidence bounds) for a one-dimensional model are given in my earlier Political Analysis

8Roll calls with fewer than three legislators voting for or against the proposal were dropped from the analysis,
consistent with Poole and Rosenthal’s definition of lopsidedness.
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article (Jackman 2000, Fig. 5); the striking feature of those results is that there is no partisan
overlap on the recovered policy dimension, even acknowledging the uncertainty in the
estimated ideal points.

6 Assessing Dimensionality via Discrimination Parameters

With a one-dimensional model, 446 of the 486 β j discrimination parameters are distin-
guishable from zero (i.e., the 5th and 95th percentiles of the posterior for the respective β j

lie on the same side of zero). That is, 91.8% of the proposals discriminate on the unidimen-
sional policy continuum recovered by this model. In the language of factor analysis, these
446 bills load onto the single factor, the policy dimension recovered by the unidimensional
model.

Figure 2 shows that of the 40 proposals that do not discriminate among legislators (Fig. 2,
right), most are highly lopsided votes, with close to all legislators voting for the proposals.
These lopsided votes are equivalent to test items that are too easy, which most test-takers
pass, and hence provide little discrimination. Note that there are hardly any proposals that
result in close roll calls while simultaneously failing to discriminate among legislators.
Again, this suggests that moving to a higher-dimensional model is unlikely to produce
a marked improvement in fit to the data. In addition, the left panel of Fig. 2 shows the
converse, that close roll calls provide the greatest discrimination among legislators. The
greatest discrimination occurs for votes decided by 55–45 margins, which was the partisan
composition of the 105th Senate, confirming the strong partisan polarization recovered by
the one-dimensional model.

In short, these inspections suggest that a one-dimensional model is a reasonable fit to
the data. Roughly 92% of the roll calls discriminate with respect to the the recovered policy

Fig. 2 Discrimination parameters and roll call margins, one-dimensional model, 105th U.S. Senate.
The posterior means for the discrimination parameters [the slope parametersβ j in Eq. (1), equivalent
to factor loadings] are plotted on the vertical axis, and the number of legislators voting Yea on
the horizontal axis. Roll calls with statistically significant discrimination appear on the left (90%
confidence bounds do not overlap zero); 40 roll calls (8.2% of the total number of roll calls analyzed)
with no statistically significant discrimination appear on the right panel.
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continuum, and 87.78% of the individual votes (discarding abstentions and absences) are
correctly classified.9 Below I consider whether these suggestions are correct, by considering
the performance of a two-dimensional model.

7 Priors for a Two-Dimensional Model

Initial attempts to fit two-dimensional models with vague priors on the proposal parameters
generated posterior densities like those in the second and third rows in Fig. 1. The data
simply are not sufficiently informative about the model parameters to let us resolve the
different components of the posterior density. Consistent with the discussion in Section 4, I
reduce the complexity of the posterior density via informative priors over selected proposal
parameters. But which proposals?

Consider the substantive content of the roll calls that do not discriminate in one di-
mension. Do these proposals have anything in common substantively, accounting for why
they fail to discriminate on the highly partisan dimension recovered by the unidimensional
model? If so, this common basis is likely to form the basis of a second dimension. Of the 40
roll calls that fail to discriminate, five occur on one day, April 30, 1998 (roll calls 111, 112,
115, 117, and 118, 2nd session, 105th Senate), and one is a reasonably close vote (roll call
112; failing 41–59). Inspection of Congressional Record shows that with the exception of
118, these roll calls were all on amendments and final passage of a resolution ratifying the
expansion of NATO to include Poland, Hungary, and the Czech Republic. I let two of these
bills supply my initial guess as to the substance of the second dimension in the data. I do
this by specifying informative priors on the discrimination parameters for roll calls 111 (a
proposal to defer ratification until Poland, Hungary, and the Czech Republic joined the EU)
and 117 (final passage; passing 80–19); these votes are near-mirror images of one another,
with just four senators voting Nay on both roll calls and just two senators voting Yea on
both. Thus I am quite confident that these two roll calls tap the same underlying policy
dimension; strong associations are also apparent with the other NATO-expansion roll calls.
The priors assigned to discrimination parameters for these roll calls are

π(β111) = N

([
0

−4

]
,

[
.01 0

0 4

])
and π(β117) = N

([
0

4

]
,

[
.01 0

0 4

])

such that support for the expansion of NATO is associated with positive movement on
dimension two. Note the tight prior around zero for the dimension 1 discrimination pa-
rameter, ensuring that this roll call discriminates exclusively on the second recovered di-
mension. The choice of 4 as the magnitude of the informative prior mean on the second
dimension is somewhat arbitrary. Guidance in choosing the prior mean comes from in-
specting the statistically significant β j for the one-dimensional model: the magnitudes
of these parameters have an interquartile range of 3.8 to 10.5, and so my choice of 4.0
is toward the lower end of this range, but fairly typical for bills decided by 80–20 mar-
gins (see Fig. 2, left). The prior variances are chosen such that the prior means are two
prior standard deviations away from zero.10 As in the one-dimensional model, all other

9Classifications were performed by generating predicted probabilities of each individual voting decision with all
model parameters set to their posterior means and using a classification threshold of 0.5.

10An informative prior on just one of these roll calls produces results that are almost indistinguishable from those
reported here. Note that these priors do not rule outβ111,2 > 0 orβ117,2 < 0, and in fact, the prior probability of
either event is roughly 0.025. Thus each prior alone is not sufficient to stop the Gibbs sampler visiting posterior
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Fig. 3 Posterior means, ideal points of the 105th U.S. Senate, two-dimensional spatial voting model.
Lighter points indicate Democrats, to the left of the policy space; darker points indicate Republicans,
to the right of the policy space. Ninety-five percent confidence regions are displayed for the indicated
senators; the names of these senators are centered on the location of the respective posterior means.

discrimination parameters and all the intercept parametersα j are assigned a vague N (0, 100)
prior.

A Gibbs sampler was used to sample from this posterior density; 1.5 million samples
were generated, with the first 100,000 iterations discarded as “burn-in” (letting the sampler
move away from its initial values to the neighborhood of the joint posterior mode) and then
every 2000th Gibbs sample retained for inference. The retained Gibbs samples generally
have low to moderate autocorrelations across iterations. The results reported below are
thus based on 700 reasonably independent samples from the joint posterior density for the
model parameters; summaries of these samples (e.g., means and confidence intervals) can
thus be regarded as valid characterizations of the joint posterior. Further details on the Gibbs
sampler are available upon request, as is the computer code for the sampler.

8 Results

Figure 3 shows the posterior means of the xi for all 100 senators, with 95% confidence
regions displayed for seven senators.11 Since the use of priors solves the scale invariance
problem, the metric information conveyed by Fig. 3 is meaningful. That is, distances on the
horizontal dimension are in the same metric as distances on the vertical dimension. In this
case, the fact that there is considerably more variation along the horizontal dimension is a
direct reflection of the fact that the horizontal dimension is a more important determinant
of the roll calls than the vertical dimension.

modes with, say, β117,2 < 0 but is sufficient to make visits to those modes rare and clearly distinguishable
from the “desired” mode with β117,2 > 0. But with priors on both parameters, the joint event β111,2 > 0 and
β117,2 < 0 becomes very rare and is sufficient to ensure the posterior density is unimodal.

11The confidence regions are formed by first fitting a two-dimensional density over the output of the Gibbs sampler,
using Loader’s (1999) local fitting density routines (using a tricube kernel and a α = 0.50 nearest-neighbor
bandwidth). The fitted density is then used to generate a 95% highest-density region (HDR), using algorithms of
Hyndman (1996). Formally, then, each plotted confidence region is an estimate of that region of the parameter
space supporting the upper 95% of the posterior density for the respective ideal point. As the the number of roll
calls (m) increases, these posteriors tend to a normal density (Chang and Stout 1993), and each HDR converges
to an ellipse. Since m = 486, the slight irregularities in the HDRs in Fig. 3 could reflect a departure from
asymptotic normality but more likely reflect Monte Carlo error; with a longer run of the Gibbs sampler, the
HDRs will tend toward ellipses.
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Table 1 Model comparisons: spatial voting models fit to the
105th U.S. Senatea

One Two
dimension dimensions

log-likelihood −12,965.14 −11,844.19
d f = nD + (m + 1)D 1,072 1,658
AIC 28,074.28 27,004.38
Schwarz 30,867.03 31,323.75
Classification rates (%)

All 87.78 88.62
Yeas 90.43 90.85
Nays 84.04 85.49
Democrats 86.74 87.72
Republicans 88.62 89.36
Best, by senator 94.70 95.89

(Kennedy) (Akaka)
Worst, by senator 71.13 71.13

(Byrd) (Byrd)
Worst, by roll call 54.0 58.6
Perfect roll calls (No.) 13 14
Mean PRE 0.524 0.561

aAll quantities are generated by generating predicted probabilities with
model parameters set to their posterior means. The classification thresh-
old is 0.5. Perfect roll calls are those with no classification errors. Fol-
lowing Weisberg (1978), Poole and Rosenthal (1991), and Heckman
and Snyder (1997), PRE is defined relative to a null model, in which all
senators vote with the majority on each roll call, and then averaged across
the m roll calls.

Another significant feature of these data is the strong separation by party along the
horizontal dimension. Even taking into account the reasonably large confidence intervals,
there is extremely little overlap by party. On the other hand, senators are not clearly distin-
guished on the vertical dimension; not only are the senators less dispersed vertically than
horizontally, but the relatively wide confidence intervals mean that it is extremely difficult
to authoritatively order the legislators along this dimension. This is one indication that little
has been gained from fitting this second dimension.

Table 1 presents a detailed set of model comparisons, formed by generating predicted
probabilities with the model parameters set to their posterior means. The use of informative
priors means that a classical likelihood ratio test cannot be interpreted in the usual way (the
reported log-likelihoods are actually mean posterior likelihoods; space precludes considera-
tion of formal Bayesian model comparisons). With this important caveat in mind, the critical
value of the χ2 test is 643.42, while twice the difference in the recovered log-likelihoods is
1120.95, overwhelmingly rejecting the restrictions implied by the one-dimensional model.
This improvement in likelihood more than offsets the penalty for lack of parsimony tapped
by the Akaike information criterion, which prefers the two dimensional model. On the
other hand, the Schwarz criterion imposes a bigger penalty for additional parameters and
prefers the simpler one-dimensional model. Comparing a variety of classification measures
also suggests that little is gained in the way of predictive power in moving to higher di-
mensions. For instance, the rate of correct classification for this two-dimensional model is
88.62%, compared with 87.78% for the one-dimensional model, a proportional increase of
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Table 2 Comparison of discrimination parameters, one- and two-dimensional models,
105th U.S. Senatea

Two-dimensional model

One-dimensional “Pure” “Pure” Both No
model dimension 1 dimension 2 dimensions discrimination Total

Discrimination 282 12 151 1 92%
No discrimination 0 26 0 14 8%

Total 58% 8% 31% 3%

aProposals are considered to discriminate if the 90% confidence interval of the posterior density for the
respective slope parameter does not overlap zero.

just 0.97%, or in absolute terms, 400 more correct classifications of 47,739 individual voting
decisions. This is an extremely modest increase given that the two-dimensional model has
n + m = 586, or 54.6% more parameters than the one-dimensional model.

Another way to compare the two models is to ask if moving to a two-dimensional model
increases the number of roll calls with nonzero discrimination parameters? That is, does
the two-dimensional model explain more roll calls than the one-dimensional model? And
if so, which roll calls discriminate with respect to which dimensions?

Table 2 shows the cross-classification of roll calls by whether they discriminate among
legislators for the two models presented here. Discrimination parameters are again con-
sidered indistinguishable from zero if the 90% confidence interval of the respective pos-
terior density overlaps zero, the equivalent of a classical one-tailed test at p = .05. In
the two-dimensional model, roll call j can either (1) discriminate solely on dimension 1
(βj1 �= 0, βj2 = 0), (2) discriminate solely on dimension 2 (βj1 = 0, βj2 �= 0), (3) discrim-
inate on both dimensions (βj1 �= 0, βj2 �= 0), or (4) fail to discriminate on either dimension
(βj1 = 0, βj2 = 0). The first feature to note is that, in moving to the two-dimensional model,
additional roll calls are rationalized in terms of the recovered spatial structure. Ninety-seven
percent of all roll calls discriminate on either or both of the dimensions recovered by the
two-dimensional model, a net improvement of 25 roll calls over the one-dimensional model.
One hundred eighty-nine (39%) roll calls load on dimension 2, of which 38 are “pure” di-
mension two roll calls.12 Of these 38 roll calls, 26 (roughly two-thirds) did not discriminate
in the one-dimensional model, underlining the fact that this dimension is nearly orthogonal
to the dimension recovered by the one-dimensional model, via the use of informative priors
on selected roll calls.

These 38 roll calls supply the substantive content of the second dimension. Given the pri-
ors specified earlier, the NATO ratification roll calls discriminate with respect to dimension
two and will supply part of whatever substantive content vests in the dimension. But what
else? That is, having estimated the model, is it possible to replace the label “dimension 2”
with a politically meaningful label? Of course, in the Bayesian approach it is always pos-
sible to assign substantive labels to dimensions a priori, by specifying informative priors
on the discrimination parameters for more roll calls. Given my spartan use of priors (just

12Another useful way to think about “pure” dimension 1 or “pure” dimension 2 roll calls is to note that their
indifference lines or cutting planes are parallel with the dimensions. The slope of the j th cutting plane is
−β j1/β j2, so pure dimension 2 roll calls have horizontal cutting planes, while pure dimension 1 roll calls have
vertical cutting planes.
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Table 3 Description of selected “pure” dimension 2 roll calls

Date Number Yea–Nay β j2
a Substantive area

6/27/97 155 30–69 −6.0 Ethanol tax exemption
7/23/97 196 53–47 4.8 Tobacco subsidy
7/23/97 199 59–40 10.8 Market Access Program (promoting U.S.

goods in foreign markets)
10/1/97 264 55–45 9.7 Senator’s pay
10/30/97 287 69–30 7.9 Military spending, line-item veto override
11/4/97 292 69–31 6.9 Reciprocal Trade Agreement (“fast track”),

cloture
11/5/97 294 68–31 8.0 Reciprocal Trade Agreement (“fast track”)
3/11/98 27 71–26 6.8 Ethanol tax exemption
3/23/98 39 61–31 11.9 Miscellaneous items from natural disaster

spending
4/30/98 112 41–59 −6.5 NATO expansion
5/21/98 145 37–61 5.4 Tobacco industry liability
7/15/98 201 53–46 −5.1 Trade sanctions
7/15/98 202 70–29 11.5 Market Access Program
7/16/98 206 71–28 11.7 Declarative resolution (“sense of the Senate”)

concerning various trade-related items,
including fast-track, IMF funding, sanctions,
regulations on farming

10/21/98 314 65–29 10.4 Miscellaneous items from omnibus emergency
appropriations

aThe posterior mean of the respective dimension 2 discrimination parameter.

4 of the m · D = 972 discrimination parameters are assigned informative priors), the data
supply most of the substantive content of the recovered dimensions.

Table 3 lists a selection of “pure” dimension two proposals with reasonably nonlopsided
votes, along with a summary of the substantive content of each proposal. Trade dominates
this list (especially in agricultural-related trade issues), although a number of issues appear
in the list: e.g., overriding President Clinton’s line-item veto of certain military spending
projects, attempts to remove pork-barrel spending from emergency appropriations, and
senators’ own salaries. In sum, my priors on two of the NATO ratification votes supply
enough information for a second dimension to be resolved in the data. Inspection of the roll
calls reveals this second dimension to be akin to a “free-trade/internationalist” dimension,
but this label does not exhaust the substantive content of the dimension.

9 Conclusion

My focus in this article has been on parameters specific to roll calls (β j ) rather than
legislator-specific ideal points (xi ). Discrimination parameters almost always play a sec-
ondary role in the analysis of roll call data, the primary goal usually being the measurement
of the ideal points. But discrimination parameters are the functional equivalents of factor
loadings, and just as in factor analysis, they (1) enable researchers to discern the substantive
content of the recovered dimensions, (2) can be used for goodness-of-fit assessments, and
(3) are an obvious vehicle for introducing prior information into roll call analyses. These
interpretations of discrimination parameters are greatly facilitated by Bayesian simulation
methods, which simplify estimation and inference for the massive number of parameters
generated by roll call analysis.
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In the specific data set at hand, priors were needed to help resolve a second-dimension
in the 105th U.S. Senate data. The informative priors I specified for just two roll calls
were adopted largely for convenience, reducing the number of components in the posterior
density, thereby “improving” identifiability. But priors need not play a mere technical role,
and indeed, I chose priors by closely inspecting the substance of the roll calls. And more
generally, researchers with interests in, say, trade, foreign policy, or environmental policy
can specify informative priors for the discrimination parameters of key roll calls; in an
extremely crude way, this is how interest group ratings get constructed. These priors effec-
tively “prelabel” one or more of the dimensions presumed to underlie the roll calls. Analysis
can then proceed entirely consistent with the spatial voting model, but incorporating the
researcher’s prior beliefs about the dimensions underlying the policy space. Researchers
might then investigate what other roll calls discriminate with respect to these dimensions,
which may be helpful in better understanding the politics underlying the observed roll calls
and understanding legislative politics more generally. Other models might be considered,
embodying an alternative set of prior beliefs linking specific roll calls and the dimensions
of the proposal space.

This is not to say that Bayesian approaches are the only way to make roll call analysis
substantively richer. For instance, Londregan’s (2000b) innovative analyses of voting in
Chilean Senate committees are wholly within a classical MLE framework, albeit with small
roll call data sets and assumptions that (rather dramatically) reduce the number of proposal
parameters being estimated. On the other hand, Clinton and Mierowitz’s (2001) roll call
analysis incorporates an assumption of how the legislative agenda progresses over time (us-
ing the first U.S. Congress as an example) and is wholly within a fully Bayesian framework.
In short, the goal that Bayesian methods make plausible is a transformation of roll call
analysis, from a technical scaling or measurement problem best left to psychometricians
(witness the canonical status of NOMINATE scores) to something that scholars motivated
primarily by substantive concerns can do for themselves.
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