
STOC(I .~ i lwaukee 1 9 8 1) , 2 6 3 - 2 7 7 .

UNIVERSAL SCHEMES FOR PARALLEL COmmUNICATION

L.G. Valiant and G.J. Brebner,
Computer Science Department,

Edinburgh University,
Edinburgh, Scotland.

1. Introduction

Although parallel computation has been studied

intensively for more than a decade the following

central question has remained tantalizingly open:

Is it feasible to build a general purpose computer

that can exploit in arbitrary problems the inherent

parallelism present in them. In this paper we

isolate a combinatorial problem that, we believe,

lies at the heart of this question and provide some

encouraginqly positive solutions to it. We show

that there exists an N-processor realistic computer

that can simulate arbitrary idealistic N-processor

parallel computations with only a factor of O(log N)

loss of runtime efficiency. The main innovation

is an O(log N) time randomized routing algorithm.

Previous approaches were based on sorting or perm-

utation networks, and implied loss factors of order
2

at least (log N)

Several models of parallel computation have

been suggested in the literature. In the context

of efficient synchronous multiprocessor algorithms

there is just one model that is widely used.

This consists essentially of N processors, each

with general purpose sequential capabilities, that

share a common memory and can access it in parallel

almost arbitrarily. The access restriction, which

is guaranteed during algorithm design, is that

there are no store conflicts (i.e. no storage area

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1981 ACM 0-89791-041-9 /80/0500/0263 $00.75

is written to simultaneously by more than one, or

some other constant number, of processors) .

Optionally, also, fetch conflicts are prohibited.

This shared memory model reflects our intuitions

about intrinsic parallelism quite well. Unfortun-

ately no direct realization of it appears feasible

in foreseeable technologies. For this reason we

shall call this the idealistic model. It is widely

used implicitly in the literature. One attempt to

formalize it can be found in [7].

By a realistic parallel computer we mean a large

number N of processors, connected together by

directed edges with at most d edges entering and

at most d leaving each processor. Physical limit-

ations dictate in practice that d should be small.

We incorporate this in the model by assuming through-

out that d is either a constant independent of N,

or a slowly growing function such as log2N. Each

processor will be a universal sequential computer

in the customary sense with some local memory.

The fundamental problem that arises in simulat-

ing on a realistic machine one step of an idealistic

computation is that of simulating arbitrary connect-

ion patterns among the processors via a fixed spa~

network. This can be formulated within packet-

switching terminology: Our proposed general purpose

parallel computer U has some packets of information

at each node. Each packet has a destination address

written on it that specifies the node to which it

is to be sent. The task of U is to route the

packets to their correct destinations simultaneously

so that at most one packet passes down any wire at

any time and all of them arrive at their destination

quickly, i.e. within O(log N) time.

The above restrictions impose some limits on

263

the co~unication patterns that can be simulated

fast. For example, if initially there are h

packets at some node then it will need at least h/d

time units merely to transport these away from the

node. Hence to achieve runtime log I~ we certainly

cannot place more than d.log N packets at any node

initially. An attractive paradigmatic subproblem

is therefore that of realising nermutations (i.e.

initially one packet at every node, all with distinct

destination addresses.) For practicality it is

necessary to be able to realise also partial perm-

utations (i.e. initially at most one packet at every

node, all with distinct destination addresses.) In

fact our techniques will solve directly the more

general case of partial h-relations (i.e. initially

at most h packets at any node, with no destination

occurring on more than h packets.)

In our formulation each packet is atomic but

carries with it some tickets that contain all the

book-keeping information necessary (e.g. destination

address, routing information, scratch pads.) From

the considerations of the previous paragraph it

should be clear that within time log N information

from at most d.log N packets can be gathered to

any one node from other nodes. It follows that

for routing the packets the strategy will have to

be based on only a minute fraction of the total

information necessary to specify the complete

communication pattern. We conclude that the rout-

ing algorithm has to be highly distributed. (The

same conclusion follows more fundamentally from a

s~mple information theoretic argument and therefor~

applies also in the case when book-keeping inform-

ation.can be communicated on its own, and not

only wren accompanying packets.) The reader should

note that otherwise simple questions may become

problematic in a distributed context. For example,

realising a partial permutation is no longer triv-

ially reducible to the problem of realising a perm-

utation.

The problem of realising permutations in sparse

networks has been studied in a non-distributed con-

text for some time. Permutation networks [3] achieve

delay 21og2N and can be implemented on an N-node

constant-degree graph namely the shuffle/exchange

[14]. Unfortunately it is difficult to parallelize

this. Even on the idealistic par&llel model the

best bound known for computing the routing is

O((logN) 2) [7,8], while on realistic models it is

O((logN) 4) [5,8,11]. An alternative approach is

to use Batcher's sorting networks [2]. Although

these are distributed and also implementable on

sparse graphs [9] the best bound is again

O((log N) 2), and adaptation to partial permutations

involves further losses by constant factors.

The purpose of this paper is to present schemes

that can realise arbitrary permutations (or even

partial h-permutations for constant h) in time

O(logN). The algorithms use randomization [10,13].

They are always correct, and terminate in the

required time with overwhelming probability. They

have the additional property called testability,

of having the same probabilistic behaviour for all

permutation requests. Hence its run time and local

storage requirements can be determined with

accuracy by running enough Monte-Carlo simulations

on any one fixed permutation.

The ideas in this paper originate from an
earlier algorithm [16] for which some experimental
results were reported in [17]. There O(log N) run-
time was provably achieved for the Boolean n-cube
(which has degree log N.) IIere we shall first give
an alternative algorithm for the cube that has a
simpler and more general proof. We then give
schemes based on shuffle graphs that, on experiment-
al evidence, achieve runtime O(log N) with only
constant degree, and provably achieve o(log N) time
with o(log N) degree. Finally in Section 8 we give
a (nontestable) routing scheme for k-dimensional -k
grid graphs that, essentially, run in time (2k-l)N I/
and require local storage for O(log N) packets at
each node. This should be compared with the im-
plementations of Batcher's sorters due to Thomson
and Kunq [15] that can route full permutations in
time 6~ ~/2 if k= 2 and (3k 2 +k)N Ilk for k > 2.

The results as stated assume that the trans-

mission times for all connections are equal and that

they dominate all other steps. If this condition

holds then the schemes based on the d-way shuffle

(Section 6) appear to be ideal. If transmission

times are proportional to physical distance the above

assumption is unrealisable unfortunately and it

becomes logical to use grids for interconnections.

The schemes of Section 8 then become relevant.

A good survey of general purpose intercon-

nection patterns is given by Siegel [12]. For very

recent work on general purpose parallel computers

see Schwartz [ii], and Gal~l and Paul [5].

264

2. A General Class of Parallel Communication

Schemes

The schemes considered in this paper all con-

form to the following pattern of parallel communi-

cation schemes (PCS):

(a) There is a directed graph G=(V,E) where V

is a set of N nodes {O,I,...,N-I}. The nodes all

have indegree d and outdegree d. llence the

number of edges is [El = dN.

(b) There are a total of T atomic packets in

the system at any time. Each carries with it

some tickets for book-keeping. Initially the

tickets contain no information except for the name

of the packet and its destination address. During

execution the tickets may be altered. The routing

of a packet depends, however, only on the current

contents of its ticket. Such a scheme is said to

be oblivious (or non-adaptive) if for every packet

alterations in its ticket never depend on the

presence, contents or tickets of any other packet.

(Typically alterations merely record the progress

made towards the destination.)

(c) At every integral instant (i.e. t=0,1,2)

each packet is at some node. During each unit

interval (i.e. time period (t,t+l) for some integral

t) each edge can transmit one packet in the sense

of its direction.

(d) At every node there are d queues each one

associated with one of the edges directed out of

the node. At the start of each unit interval

each queue contains a set of packets and the

queuing discipline determines which one is to

be at the head of the queue provided the latter

is nonempty. During the unit interval the head

of each nonempty queue is transmitted along the

associated directed edge to the neighbouring

node. Our results hold for every queuing

discipline that has the minimal property of

defining a head for every queue that is nonempty.

(e) At the end of each unit interval the packets

at a node may consist of those that have just

arrived from a neighbouring node, others that have

been waiting in one of the queues during this last

interval, and others still that were already finished

(i.e. had arrived at their final destinations)

before this interval. The routing algorithm

decides for each unfinished packet on the basis of

its ticket which queue it is to be in at that node.

An initialised scheme is a pair (S,IC) where

S is a PCS of the kind described in (a)-(e) above,

and IC describes initial conditions for it. IC

specifies how the packets and their destinations

are distributed at time zero.

Definition If e is an edge in (S,IC) then Traff(e)

the traffic in e, is the expected number of distinct

packets that ever pass along e in a run of (S,IC).

[N.B. Probabilities may enter both through proba-

bilistic assumptions in IC and through randomization

in the algorithm.]

Definition An initialised scheme (S,IC) is symmetric

iff for any two edges el,e 2 in S, Traff(el)=

Traff(e2).

The delay of a packet X in a run of (S,IC) is

the total number of time units during which X waits

unserved in queues. Its route is the path taken in

G. [N.B. The time at which the packet X becomes

finished is clearly the sum of its route length and

its delay.] A scheme is nonrepeating if whenever

two packets take paths ele2...e r and ele 2...es in

which e =e and e e (k > i) it is the case that
1 3 k m

k-i = m-j and for all p (i -<p<k) e = e
D p+j -i"

3. Preliminary Facts

We first prove a lemma that is sufficient to

guarantee that the later results hold for arbitrary

queuing disciplines. To state it we define a

queue line to be a directed path of length n

with nodes xl,...,Xn+l, edges

{e i = (xi,xi+l) ll-<i-<n} and a queue qi at each

node x. (1-< i-< n), together with a set of triples
l

{(ij, t , rj)ll-<j <m} that specifies that there
3

are m packets Xl,...,Xm, and that for each

j (1 < j <m) X is added to qi at time t and has
J . J

destination xi +r .. 3

3 3

A queue line operates like an initialised PCS.

We denote the delay suffered by X. by 6..
3 3

Clearly X. will leave the system at time
3

t. +r. +~..
3 3 3

Fact i If a queue line S contains m packets

then no packet is delayed by more than m-l.

265

Proof Suppose that packet X in S has the worst delay

possible in any m-packet line, and w.l.o.g, that all

packets have destination Xn+ 1 . Then the delay

suffered by X depends on the queuing discipline in-

voked by queue q at time t only if X is present in

q at time t. Hence, without loss of generality, we

can assume the following queuing discipline: If at

time t X is in qi then for all t'> t and all

j >i, queue qj will give preference at time t' to

packets that entered at x k for some k < j, over any

packets entering at x.. Clearlv, under this ass~mo-

tion, any packet that has moved at least one step in

the system after entering, and is then "ahead" of X,

will flow at constant speed and will never suffer

any later delays.

We choose any packet Y distinct from X. We say

that "Y delays X at x i at time t" if at instant

t both X and Y are in qi and Y is chosen to be

transmitted to xi+ 1 in the interval (t,t+l).

Suppose now that Y does delay X at x. at time t.
l

Then at time t + 1 X will be at xi+ 1. Since Y will

never be delayed again X and Y will never be in the

same queue again. Hence Y cannot delay X a second

time.

Since there are just m- i choices of Y the

result follows.

The remaining results we need concern the est-

imation of probabilities. Consider N independent

Bernoulli trials each with probability p of success.

The probability that at least m of the trials succeed

is denoted by B(m,N,p). We shall be interested

in the more difficult case of unequal probabilities.

The following Theorem of Hoeffding [6] is crucial to

our analysis.

Fact 2 If we have N independent Poisson trials with

respective probabilities, pl,...,p N where Zpi =Np

and if m ~ Np + 1 is an integer then the probability

of at least m successes is at most B(m,N,p).

Finally we need bounds on B(m,N,p) itself:

Fact 3 If m ~Np is an integer then

.

Proof The first inequality is due to Chernoff [4].

The second follows immediately from the inequality

(1 + x-l) x < e in the case that x = (N-m)/(m-Np).

D

For m near to Np the following result

derived from Chernoff's bound is sometimes useful

[I].

Fact 4 If m = Np(l+8) where 0 S 8~ 1 then

B(m,N,p) Se -~82NP.

4. A Scheme for the Boolean n-Cube

We describe a scheme that has the Boolean n-

dimensional cube as its graph. It shares with our

later schemes the following two-phase strategy. In

Phase A it sends each packet to a randomly chosen

node of the graph, in Phase B it sends it to its

correct destination.

(i) The graph, defined for powers of two, N=2 n,

is G=(V,E) where V = {0,i N-I} and

E = {(x,x//i) Ix £ V, i6{1 n}}. Here x//i de-

notes the number whose binary representation is the

same as that of x except in the i th most

significant bit.

(ii) The routing algorithm: In each phase each

packet X has a ticket T that is a vector of
X

length n and executes the following program:

cobegin for i:=1 step 1 until Tx[i+l]=0 or i=n

do Transmit X from current node y

to y//Tx[i];

coend

Clearly, T X specifies the sequence in which the

dimensions are to be traversed. The packets

execute the above algorithms simultaneously as fast

as the queues allow. Their routes are predeter-

mined by their tickets. The rate at which a packet

progresses on its route does, of course, depend on

how often other packets share segments of its route.

(iii) Initialization of tickets. We need two sub-

routines: If C is a set "Pick c ~ C" means

"choose an element of C at random, with each

member having the same probability of being chosen,

and assign it to c". Given a vector T[l..n] "Pack

T" means "if there are r non-zero elements in T

assign these to T[1],...,T[r] in order of occur-

rence and assign zero to T[r+l], T[n]". For

each packet X its ticket for Phase A is pre-

eomputed as follows:

2 6 6

begin for i:=l step i until n do

begin T [i]:=i;
x

Pick ec{0,1};

if ~=0 then Tx[i]:=0 ;

end;

Pack TX;

end.

The effect of running Phase A with such tickets

is to send each packet to a randomly chosen node.

The choices for the packets are independent (and,

in general, not distinct). For each packet X

that is sent to node u by Phase A and has

destination v, a ticket is precomputed for Phase

B as follows:

begin for i:=l step 1 until n do

if ui=v i then Tx[i]=O e l s e T x [i] = i ;

Pack TX;

end

It should be clear that rt~nning Phase A to

completion and then running Phase B constitutes a

correct routing algorithm. In the next section we

will show that the two phases when run consecu-

tively are fast with enormous probability. Sur-

prisingly, the proof depends only on three general

properties already defined. These we now verify.

Both phases are oblivious since the route of

each packet depends only on random decisions in

Phase A, and only on its current position relative

to its destination in Phase B. Each phase is non-

repeating since if two routes share an edge and

then diverge, on dimension i say, then the

remainder of these routes will always differ in

the i th dimension. Finally we have to verify that

if the initial conditions IC place exactly h

packets at every node and every destination

appears on exactly h packets (i.e. a full

h-relation) then each phase is symmetric.

Consider an arbitrary edge (u,v) where ul~v I.

The packets that pass through (u,v) in Phase A

are just those that originate for some x such

that x]=u 3 for every j with i ~ j ~ n. There are

h2 i such packets. Each one has probability 2 -i

of being at u after it has traversed dimensions

l,...,i as directed by its ticket. Since each

packet has probability one half of then traversing

(u,v) we conclude that the expected number of

packets that pass along this edge is

h2i.2-i.2-1=h/2. Hence the initialised scheme Phase

A is symmetric. Phase B is run with input supplied

by Phase A. The argument that Phase B is syrmnetric

follows by a similar arguement.

The results of the next section show that the

above three properties guarantee termination of

each phase within time K.log2N (K independent of N)

with overwhelming probability. They also show that

the same applies if some of the packets are removed

so as to get a partial h-relation. It is easy to see

that claims about the phases apply also to the over-

all algorithm when implemented in the following way:

Run Phase A; start running Phase B for each packet

either at time K.log2N, if the packet has finished

in Phase A by then, or as soon as it has finished

in Phase A. The algorithm is still correct and

with overwhelming probability runs in two time-

disjoint phases as intended.

5. The General Theorem

We shall first state the general result and

then apply it to the scheme of the previous section.

Theorem 1 In any initialised scheme that is obliv-

ious, nonrepeating and symmetric, and has (i) N nodes,

(ii) degree d, (iii) T = hN packets in total, (iv)

maximal route length ~ , and (v) expected route

length n , the probability that some packet is

delayed bi~ at least A units is less than

T

--Z-g- J

where e = 2.71...

Examole 1 The scheme based on the n-cube has

d = ~ = n and ~l = n/2 for each phase, where

N = 2 n. Consider the case of permutations (i.e.

h = 1). The probability that a phase fails to

finish within time u + A = n + Kn is at most

IIence for all Ka 2.5 this probability is at most

4-Kn.2 n ~ N -K.

In other words the probability of not finishing in

time (K+l)log2N vanishes rapidly as K increases.

Proof of Theorem 1 Packet X intersects edge e.
l

in a run of the scheme if its route contains e..
i

Consider some fixed route R and name the edges of G

267

that these often occur at different times and hence

cause no delays. The results did strongly suggest,

however, that the real delays were so small that the

most important factor in the run-time of a scheme

was simply the diameter of the graph. In this res-

pect the cube is non-optimal since with degree

d = log2N we may expect every node to be reached

from every other within distance log~{ =

log2N/log21og2N rather than log2N as with the

cube. With this motivation we considered the foll-

owing family of schemes, called the d-way shuffle,

indexed by the parameter d.

(i) The graph, G = (V,E) is defined for N = d n.

The nodes are V= {O,...,N- i} and the directed edges

E= { (x,y) I xk-I k =y for each k (2 Sk~ n)}

where for z £ V z i denotes the i th most significant

digit in the d-ary representation of the number z.

In other words there is an edge from x to y if the

last n- I d-ary digits of y equal the first n- 1

of x . (N.B. If d = 2 this graph is closely

related to but not identical with what is known as

the "shuffle/exchange"graph.)

(ii) The routing algorithm consists of two phases

A and B. In each phase each packet X has a ticket

vector Tx[i] of length n . In each phase the

packets execute the following program simultaneously

cobegin for i: = 1 step 1 until n do

Transmit X from current node y to that

adjacent node z with z I =T [i].
X

coend.

(iii) Initialization of tickets.

Phase A: begin for i: = i step l until n do

begin Pick ~{ {O, d- 1}

T (i) = a;
X

end

end

Phase B: Suppose that packet X is at node u

and destined for node v .

begin for i = istep i until n

do Tx[i] : = v i

end

It should be clear that Phase A sends each packet to

a random node, while Phase B then sends it to its

correct destination.

Unfortunately our general Theorem 1 cannot be

applied here directly because the algorithm in its

present form is neither sy~netric nor non-repeating.

The problem can be illustrated with d = 2 and n = 4.

For any u and v there is a length four path between

u and v. There may, however, be shorter paths also

e.g. (i011 ÷ iiO1) and (iO11 + iiO1 + O110 + i011 ÷

llOl) are two distinct paths between the same pair

of nodes. Indeed the node OOOO has a self-loop.

Fortunately we can see easily that given u,v and an

integer k (O S k N n) there is at most on__ee path of

length k between u and v. Using this fact we can

guarantee the algorithm to be non-repeating by mod-

ifying the ticket preparation as follows in both

phases: If a packet X at node u is given a ticket

that sends it to v, modify the ticket so that it

still sends X to v but does so by the shortest route.

(Given u and v such a ticket can be found easily by

trying k = o,l,...,n- I). This new scheme, called

the modified scheme for the d-way shuffle, is, of

course, still not symmetric. Luckily direct analysis

is possible.

In the proof of Theorem 1 a bound (4) is obtain-

ed on P using symmetry. The rest of that proof
X

assumes only obliviousness and non-repetition.

IIere we shall give a bound on Px by direct analy-

sis. The remainder of the argument will follow as

before.

Theorem 2 $~en the modified scheme for the d-way

shuffle is used to implement an h-relation, in both

phases the probability that some packet is delayed

by at least A units is less than

ehn ~A .hN

where e = 2.71

Proof First we consider complete h-relations. In

either phase we consider some fixed route R and

rename the edges E = {el,...,eNd } so that

R = ele2...e Let P be the probability that
r X

packet x intersects at least one edge in R. Then
r

PX

where Pxi

edge e

(i) Phase A: Consider an edge

For i ~ j S n let

-< ~ (I') = PXi

is the probability that X intersects

e. = (u,v) in R.
1

2 6 9

Lj = {x Ishortest path from x to u has length j- ~.

Suppose packet X starts at x • L.. If it intersects
3

e. then it travels O,l,2,...n-j- i, or n-j units
z

after leaving v. Since the outdegree of G is d

X must be destined for one of at most
n-j

d k -< d n-j+1 /(d- i)

k=O

out of the N = d n possible nodes. Since the des-

tinations are randomly chosen with equal probabil-

ities we conclude that

PXi -< i/dJ-1(d- i).

Since the indegree of G is d the total number of

packets starting at nodes in L is at most hd 3-1.-
J

Hence

n hdJ-1 hn <
Pxi d d-i

and from (i')

~Px ~ ~ ~Pxl ~ hn2/(d - 1) (4')
X i=l X

(ii) Phase B: The argument is the mi,rror image

of the one above for Phase A. Consider an edge

e. = (u,V) in R. Let
1

L. = {x I shortest path from v to x is length j - 1}
3

Suppose packet X is destined for x E L.. If it
]

intersects e. then it must have travelled
l

0,1,2 n-j- i or n-j steps before reaching u.

Hence it could have come from any one of at most

d n-j+ i/(d-i) out of the d n possible nodes.

Also the total number of packets with destinations

in L. is at most hd 3-- 1 Hence, as before,
3 r

ZPx = ~ ~Pxi -< hn2/(d-l)" (4')
X i=l X

The argument deducing Theorem 1 from relation

(4) applies here verbatim except that the factor

~/d is replaced here by n2/(d- 1).

Finally we note that if we are implementing a

partial rather than total h-relation the argument

of Corollary 1 applies here equally.

Example 3 Consider the d-way shuffle with d = n

(i.e. N = n n) when realising a partial h-relation

with h = log2n. The probability of a phase taking

time more than n + A where A = Knlog2n = Klog2N

is bounded above by

I en21og n)ICnl°g2n .nnlog2 n

If (~ o - g ~ n

(~) Knl°g2n . 22nl°g2 n

for all n ~ 2 and all K. Hence for some K
o

-K
for all K ~ K the above quantity is at most N

o

Example 4 Consider the d-way shuffle with d = n and

h = i. Then for some K the probability of the
o

delay exceeding A = (Knlog2n)/log21og2n is at most

N -K/2 for all K Z K . This shows that
o

O(log N/logloglog N) delay can be achieved using

degree O(log N/loglog N).

Examole 5 Consider the d-way shuffle with d = n/log2n

and h = i. Then for some K o the probability of
-K

the delay exceeding A =Knlog2n is again at most N

for all K a K . Hence time O(log N) is achieved
o

with degree O((log N)/(loglog N) 2).

We conjecture that the runtime is bounded by

O(log N) even when d is a constant. The exper-

imental results reported in the next section give

strong evidence for this.

7. ExDerimental Results

The algorithms were simulated by PASCAL programs

on a VAX 11/780 with the aid of a linear congruential

random number generator supplied by the system.

Some evidence for the suitability of this generator

for the problems in hand was reported in [17].

Each experiment consisted of one hundred simul-

ations. Each simulation was for an individual phase

of an individual algorithm. Phase B was always

Supplied with inputs generated by the corresponding

Phase A. The order of packets in each queue that

was nonempty when Phase B was about to start, was

always randomized prior to running Phase B. All the

experiments recorded here were for the identity perm-

utation. Other permutations were tried occasionally

as spot checks to verify consistency. In each case

the "first-in-first-out" queuing discipline was used.

The algorithms simulated were the following:

CUBES: The algorithm for the n-cube described in

section 4.

BASIC: The algorithm for the n-cube described in

[16,17]. It is the same as CUBES except that there

270

is a final operation in ticket preparation after

"Pack": randomize the order of nonzero elements.

CUBESS: As CUBES but before "Pack" in ticket prep-

aration perform the following: Pick k e {O,...,n-l},

shift T X cyclicly to the right by k.

d-SHUFFLE: The (unmodified) scheme described in

Section 6.

d-MSHUFFLE: The modified scheme described in Sec-

tion 6.

CCC: The graph is the cube-connected cycles [91 with

each edge directed both ways (i.e. d = 3). Suppose

cycles are of length s and there are N=s2 s nodes.

Ticket preparation is essentially as in CUBES except

that a node on the target cycle has to be specified

also (i.e. randomly in Phase A, according to destin-

ation in Phase B.) In between traversing the dim-

ensions as specified by the ticket the packet trav-

erses edges of cycles in a predetermined (e.g. clock-

wise) direction. (N.B. A total of s such cycle-

edge steps is always sufficient.) On arriving at

the target cycle the packet takes the shorter path

to its target (i.e. up to s/2 further steps.)

SHUFFLE/EXCHANGE. The graph has N = 2 n nodes

{O,...,N- 1}, and the edges consist of (i) shuffle

edges (x,y), where y =2x if x<N/2 and

y = 2x + 1 - N if x ~N/2, and of (ii) exchange edges

(x,y) where if x is even then y =x+ 1 , and if x

is odd then y = x - i . Ticket preparation for

phase A consists of generating a random O- i vector

of length n. The r th digit indicates whether the

th
r bit in the binary representation of the start

address has to change in the phase. Routing a

packet may be regarded as an n-stage left shift on

the binary representation of this address, with the

destination address being shifted in at the least

significant binary digit. The packet therefore

proceeds through n stages, each consisting of a

shuffle step and, optionally, an exchange step.

Figures 1,2 and 3 record the mean values

obtained for each of the following three measures:

(a) Runtime of Phase A, (b) Runtime of Phase B, and

(c) maximal node population in Phase A (i.e. the

maximal number of packets that ever reside at one

node at one integral time instant in the simulation).

The last measure is clearly important in determining

the amount of fast memory needed at each node of an

implemented PCS. The graphs show the following

schemes for each relevant value of ~ in the range

l0 < N < 5000: CUBES, CCC, SHUFFLE/EXC}L~NGE, and

d-SHUFFLE and d-MSHUFFLE for various values of d.

We summarize some other features of the experi-

mental results as follows:

(i) In no experiment on CUBES, BASIC, CUBESS,

3-SHUFFLE,...,8-SHUFFLE, 3-MSHUFFLE or 4-MSHUFFLE

was the variance in either runtime measure (a) or

(b) greater than 0.6. For 2-SIIUFFLE and 2-MSHUFFLE

it was never greater than 1.1.

(fi) In no experiment on either phase of any

algorithm was the variance in (c) greater than 0.7.

(iii) CUBES, BASIC and CUBESS had broadly comparable

performance. In Phase A CUBES and CUBESS both out-

performed BASIC as far as time (I?) but for node

population CUBESS was best and CUBES worst of the

three. For runtime in Phase B BASIC was better

than both CUBES and CUBESS.

(iv) The maximal node population in Phase B was

always found to be less than or about equal to that

in Phase A.

(v) For d-SHUFFLE a "furthest-to-go-first-out"

queuing discipline was tried but this gave only a

negligible improvement (N.B. For BASIC a substantial

improvement was found [17]).

The main conclusion of these e:~eriments is

that the d-way shuffles give outstanding performance

even when the degree d is a small constant.

8. Routing in Sauare Grids

In previous sections we assumed that trans-

mission times for all wires were identical. Here

we shall consider the opposite extreme, the case

when transmission times are proportional to wire

length. Under these circumstances a regular array

of processors is a very reasonable interconnection

pattern. We first give an algorithm for realising

permutations in a two-dimensional grid. Later we

generalise this to k-dimensional grids, for arbitrary

k. Finally we show that the algorithms need storage

for only O(log N) packets at each node. The scheme

for two dimensions is as follows.

(i) The graph is G=(V,E) where V={[i,j]10 ~i < n,

0 ~ j < n} and

E = {([i,j],[l,m])I(i=l and j--mZ1) or (j--m and i=l+l)}

Clearly there are N=n 2 nodes. They all have degree

271

20

18

16

14

12

lO

X

N=
I

22

Figure i.

I I l I I I I I
23 24 2 5 26 27 28 29 210

Completion times for Phase A: mean values for one hundred runs.

i
211

I
212

272

20

18

16

14

12

iO

J

N= 22

I

23

Figure 2.

I I I I I I !

2 ~ 2 5 26 27 28 29 210

completion times for Phase B: mean values for one hundred runs.

I
211

!
212

273

PAC

7

4-

3-

{ETS

Key:

CUBES

Q SHUFFLE/EXCHANGE

O CCC

• 2-MSHUFFLE

-~-3-MSHUFFLE

4-MSHUFFLE

2-SHUFFLE

~ 3-SHUFFLE

~4-SHUFFLE

o÷

~P

@

o

A

o

oe

0

X
O

N=

I

22
I

23

Figure 3.

I I ! I
24 2 5 26 27

Maximal node populations in Phase A:

I I I I I
28 29 210 211 212

mean values for one hundred runs.

2 7 4

four except those on the boundaries.

(ii) The algorithm consists of three phases. Phase

A randomizes in the first (say vertical) dimension

Phase Z then corrects in the second dimension.

Finally Phase B corrects in the first dimension.

Phase A For a packet at (i,j) Pick ke{0,...,n-l}

and send the packet along the column to (k,j).

Phase Z For a packet at (k,j) destined for (l,m)

send it along the row to (k,m).

Phase B For a packet at (k,m) destined for (l,m)

send it along the column to (l,m).

Since there is one packet initially at each

node Phase A can be implemented by a continuous

flow of packets along columns involving no delays

whatsoever.

In Phases Z and B any queuing discipline

with the following property suffices: "packets

that have already moved in the current phase take

precedence over any that have not". In these

phases, therefore, once a packet has started moving

it never suffers a delay since the packets already

moving in front of it continue to flow along at a

constant speed, while those that have not moved

have lower precedence. Hence the delay to a

packet starting Phase Z at (k,s)and moving right

is at most the total number of packets starting the

phase in {(k,J) lj ~ s}. The corresponding statement

holds for packets moving left. Both statements

hold for Phase B with respect to columns.

At the start of phase Z we have the following

situation : For each node (k,j) each of the n

packets originating in column j has probability

1/n of being at (k,j). Hence for each set of nodes

{(k,j) Ii ~ ~ s} the probability that there are at

least s+g packets in total at them at the begin-

ning of Phase Z is B(s+g, ns, i/n). Since it has

at most n-s steps to move, this quantity

B(s+g, ns, l/n) bounds the probability of any one

packet taking more than time (n-s)+(s+g)=n+g in

Phase Z.

When Phase B starts, each packet is randomly

placed in the column of its destination. IIence

for each set of nodes {(k,m) Ii ~k ~ s} the proba-

bility of having at least s+g packets in total

at them at the beginning of Phase B is B(s+g, n,

s/n). We conclude, as above, that B(s+g, n, s/n)

bounds the probability of any one packet taking

more than time n+g in Phase B.

Fact 3 gives the same bounds for both

B(s+g, ns, i/n) and B(s+g, n, s/n), namely

(s s____~ s+g e g (*) +g]
If g > 2s then this is less than (s/3s)g.e g = (e/3) g.

If 2s ag ~ s then it is less than

(s/2s)3g/2.eg = (e/(2/2)) g

Fact 4 also gives the same bound for both 2
-g /2s

B(s+g, ns, i/n) and B(s+g, n, s/n), namely e

for s~gZ0.

Taking g=Kn ~ (say) in each of the above three

cases yields a bound on the probability of the time
3

exceeding n+g = n+Kn ~ for all values of s

(i ~ s Sn). For an appropriate constant C < I in

all. three ranges this Drobability is bounded by

~
2

Since there are n packets altogether in

any one of the three phases the probability that
3

at least one ~acket takes time more than n+Kn ~ is
2-Kn~

at most n C We therefore conclude:

Theorem 3 There is a PCS for the n × n grid graph

with the following property: There is a constant

C < 1 such that when realising any permutation the

nrobability that at least one packet ~as not finished

in tlme 3n + 2Kn % is less than C Kn-.

The proof applies directly to partial permu-

tations. Also, the generalization to h-relations

is obvious.

It remains to show that the above algorithm

is m~rely an instance of a family cf schemes that

apply to any number of dimensions. Consider the

k dimensional cube with each side of length n.

Let G be the graph formed by placing a node
n,k

at each point with integer co-ordinates, and a

pair of oppositely directed edges between every

pair of such points separated by unit distance.

The routing algorithm now works in time (2k-l)n

(2k-l) N 1/k k or where N=n is the total number of

nodes.

The algorithm is recursive in the number of

dimensions. Route (n, k, m) is a procedure for

routing (partial) permutations in an m-dimensional

subcube of Gn, k. Denoting the dimensions by
i

1,2,...,k, a subcube of G is any set of n
n,i

nodes obtained by fixing a final segment

2 7 5

i+l,...,k of the dimensions 1,2,...,k

The overall algorithm consists of a single

call of Route (n,k,k) with one packet initially at

each node, all with distinct destination addresses.

The action of the routine on a packet X present in

the relevant subcube is described below:

procedure Route (n,k,m)

begin if m=l then send X in dimension i so as to

agree in dimension i with its destination,

else begin (Phase A): Send X along dimension m

randomly;

Route (n,k,m-l) for each G subcube
n,m~l

of G ;
n,m

(Phase B): Send X along dimension m so as

to agree in dimension m with its destina-

tion;

end;

end;

The behaviour of Route (n,k,m) can be charac-

terised by the following pair of predicates:

Precondition: For each node x of G each of the
k-m n,m

n packets originating at nodes of Gn, k with

dimensions i,... ,m agreeing with x has probability
m-k

n of being present at x. (The rest have proba-

bility zero of being at x). For any one choice of

G the n k probabilities so defined are mutually
n,m

independent.

Postcondition: For each node x of G each of
k-m n,m

the n packets whose destination address

agrees with x in dimensions 1,2,...,m,

has probability n m-k of being present at x. (The

rest have probability zero of being at x.) For

any one choice of G the n k probabilities so
n,m'

defined are mutually independent.

It is immediate that if Route (n,k,k) is

called to realise a permutation, the precondition

holds before execution. For showing correctness

of the overall algorithm we have to verify that

the postcondition holds after this call is com-

pleted. Now this can be proved easily by

induction. First note that for a call of

Route (n,k,1) the precondition implies the post-

condition. Also, before each call of Route (n,k,m)

the precondition holds. Finally we have to observe

that if the precondition implies the postcondition

for Route (n,k,m) then it does so also for Route

(n,k,m + i), for any m (i ~m <k).

To bound the probability of Phase A of a call

of Route (n,k,m) taking time at least n+g we con-

sider a packet X moving in the positive direction

along dimension m in this call, and starting at x

With coordinate value S in this dimension. The

probability that it will suffer delay at least g

will be bounded b, 1 the probability that there are

altogether at least s+g packets at nodes agreeing

with x in all but the m th dimension, and with their
th

m coordinate equal to at most s. By the pre-

condition this is at most

k-m nm-k).
B(s+g, sn ,

By the same argument but using the postcondi-

tion we deduce that the probability of delay g

to a packet X in Phase B of a call of Route (n,k,m)

is at most

B(s+g, n k - m + l s n m - k - l)

Both the above expressions are bounded by (*).

and hence for some C < 0 the probability of the

runtime exceeding n+Kn % for any packet X for any

Phase in any call is bounded above by --~Kn½. But

there are only n k packets, l+n+n2+...+n k-I

procedure calls, and two phases. IIence the pro-

bability that at least one packet fails to finish

at least one nhase in time n+Kn ~ is at most

2n2kc E/%~ ~ C Kn~ for an appropriate C < I.

Theorem 4 There is a PCS for the k dimensional

grid graph with N=n k nodes that has the following

property: There is a constant C < i such that

when realizing any permutation the probability that

at least one packet has not finished in time

(2k-l) (n+Kn~

is less than C Kn½.

The PCS that satisfies the Theorem is merely

the routing algorithm with each Phase given n+Kn ~

time. If a Phase does not finish in this time an

arbitrary correct routing algorithm can be invoked

for the remainder of the computation. Generali-

zations of Theorem 4 to partial h-relations are

easy.

From the precondition and postcondition it is

also clear that in~uediately before or after any

recursive call of Route in a run of Route (n,k,k),

2 7 6

at any node the probability of there being more than

f packets present there is at most

B(nk-m,f,n m-k)

for some m (i ~m~k). By Fact 3 this is at most

f - f f-1 .e ~ N -K

if f = Klog2N and K is large enough. Also at

any node at any instant during any call of Route

(n,k,1) the estimate holds also (to within a fac-

tor) since there can be at most one packet "in tran-

sit" that neither started the phase there nor fin-

ishes there. Hence for any fixed k an allocation

of space for Klog2N packets at each node is suff-

icient with overwhelming probability.

If the storage restriction is relaxed then

fast algorithms are easier to find. As an example

the re~der should construct a deterministic distrib-

uted routing algorithm for G that takes time
n,2

2n but may need space for up to n packets at a

node.

of Comp. Sci, 20 (1979) 140-147.

[10] M.O. Rabin. Probabilistic algorithms. In
"Algorithms and Complexity", J.F. Traub (ed.)
Academic Press, New York, 1976.

[Ii] J.T. Schwartz. Untracomputers. ACM TOPLAS
2(1980) 484-521.

[12] H.J. Siegel. Interconnection networks for
SIMD machines, Computer, June 1979, 57-65.

[13] R. Solovay and V. Strassen. A fast Monte-
Carlo test for primality. SIAM J. on
Computing 6(1977) 84-85.

[14] H. Stone. Parallel processing with the perfect
shuffle. IEEE Transactions on Computers,
C-20:2, (1971) 153-161.

[15] C.D. Thomson and H.T. l<ung. Sorting on a mesh-
connected parallel computer. CACM 20:4
(1977) 263-271.

[16] L.G. Valiant. A scheme for fast parallel
communication. Report CSR-72-80, Computer
Science Department, Edinburgh University,
(1980).

[17] L.G. Valiant. Experiments with a parallel
communication scheme. In Proc. of 18th

Allerton Conference on Communication Control
and Computing, University of Illinois,
Oct. 8-10, (1980).

Acknowledgements

Ue are grateful to Martin Furer for suggesting

that Fact 1 holds unconditionally.

References

[11 D. Angluin and L.G. Valiant. Fast probabil-
istic algorithms for IIamiltonian circuits
and matchings. J. of Comp. and Syst. Sci.
(1979) 155-193.

[2] K. Batcher. Sorting networks and their applic-
ations. AFIPS Spring Joint Comp. Conf. 32
(1968) 307-314.

[33 V.E. Benes. Mathematical Theory of Connecting
Networks and Telephone Traffic. Academic
Press, New York (1965).

[4] H. Chernoff. A measure of asymptotic effic-
iency for tests of a hypothesis based on the
sum of observations. Ann. of Math. Stat.
23 (1952) 493-507.

[53 Z. Galil and W.J. Paul. A practical general
DUrDose parallel computer, (this volume).

[6] W. Hoeffding. On the distribution of the
number of successes in independent trials.
Ann. of Math. Stat. 27 (1956) 713-721.

[7] G. Lev, N. Pippenger and L.G. Valiant. A fast
parallel algorithm for routing in permutation
networks. IEEE Trans. on Computers (1981).

[8] D. Nassimi and S Sahni Parallel algorithms
to set-up the Benes permutation networks.
Manuscript, University of Minnesota.

[9] F.P. Preparata and J. Vuillemin. The cube-
Connected cycles. IEEE Symp. on Foundations

277

