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1. Introduction 

Although parallel computation has been studied 

intensively for more than a decade the following 

central question has remained tantalizingly open: 

Is it feasible to build a general purpose computer 

that can exploit in arbitrary problems the inherent 

parallelism present in them. In this paper we 

isolate a combinatorial problem that, we believe, 

lies at the heart of this question and provide some 

encouraginqly positive solutions to it. We show 

that there exists an N-processor realistic computer 

that can simulate arbitrary idealistic N-processor 

parallel computations with only a factor of O(log N) 

loss of runtime efficiency. The main innovation 

is an O(log N) time randomized routing algorithm. 

Previous approaches were based on sorting or perm- 

utation networks, and implied loss factors of order 
2 

at least (log N) 

Several models of parallel computation have 

been suggested in the literature. In the context 

of efficient synchronous multiprocessor algorithms 

there is just one model that is widely used. 

This consists essentially of N processors, each 

with general purpose sequential capabilities, that 

share a common memory and can access it in parallel 

almost arbitrarily. The access restriction, which 

is guaranteed during algorithm design, is that 

there are no store conflicts (i.e. no storage area 
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is written to simultaneously by more than one, or 

some other constant number, of processors) . 

Optionally, also, fetch conflicts are prohibited. 

This shared memory model reflects our intuitions 

about intrinsic parallelism quite well. Unfortun- 

ately no direct realization of it appears feasible 

in foreseeable technologies. For this reason we 

shall call this the idealistic model. It is widely 

used implicitly in the literature. One attempt to 

formalize it can be found in [7]. 

By a realistic parallel computer we mean a large 

number N of processors, connected together by 

directed edges with at most d edges entering and 

at most d leaving each processor. Physical limit- 

ations dictate in practice that d should be small. 

We incorporate this in the model by assuming through- 

out that d is either a constant independent of N, 

or a slowly growing function such as log2N. Each 

processor will be a universal sequential computer 

in the customary sense with some local memory. 

The fundamental problem that arises in simulat- 

ing on a realistic machine one step of an idealistic 

computation is that of simulating arbitrary connect- 

ion patterns among the processors via a fixed spa~ 

network. This can be formulated within packet- 

switching terminology: Our proposed general purpose 

parallel computer U has some packets of information 

at each node. Each packet has a destination address 

written on it that specifies the node to which it 

is to be sent. The task of U is to route the 

packets to their correct destinations simultaneously 

so that at most one packet passes down any wire at 

any time and all of them arrive at their destination 

quickly, i.e. within O(log N) time. 

The above restrictions impose some limits on 
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the co~unication patterns that can be simulated 

fast. For example, if initially there are h 

packets at some node then it will need at least h/d 

time units merely to transport these away from the 

node. Hence to achieve runtime log I~ we certainly 

cannot place more than d.log N packets at any node 

initially. An attractive paradigmatic subproblem 

is therefore that of realising nermutations (i.e. 

initially one packet at every node, all with distinct 

destination addresses.) For practicality it is 

necessary to be able to realise also partial perm- 

utations (i.e. initially at most one packet at every 

node, all with distinct destination addresses.) In 

fact our techniques will solve directly the more 

general case of partial h-relations (i.e. initially 

at most h packets at any node, with no destination 

occurring on more than h packets.) 

In our formulation each packet is atomic but 

carries with it some tickets that contain all the 

book-keeping information necessary (e.g. destination 

address, routing information, scratch pads.) From 

the considerations of the previous paragraph it 

should be clear that within time log N information 

from at most d.log N packets can be gathered to 

any one node from other nodes. It follows that 

for routing the packets the strategy will have to 

be based on only a minute fraction of the total 

information necessary to specify the complete 

communication pattern. We conclude that the rout- 

ing algorithm has to be highly distributed. (The 

same conclusion follows more fundamentally from a 

s~mple information theoretic argument and therefor~ 

applies also in the case when book-keeping inform- 

ation.can be communicated on its own, and not 

only wren accompanying packets.) The reader should 

note that otherwise simple questions may become 

problematic in a distributed context. For example, 

realising a partial permutation is no longer triv- 

ially reducible to the problem of realising a perm- 

utation. 

The problem of realising permutations in sparse 

networks has been studied in a non-distributed con- 

text for some time. Permutation networks [3] achieve 

delay 21og2N and can be implemented on an N-node 

constant-degree graph namely the shuffle/exchange 

[14]. Unfortunately it is difficult to parallelize 

this. Even on the idealistic par&llel model the 

best bound known for computing the routing is 

O((logN) 2 ) [7,8], while on realistic models it is 

O((logN) 4 ) [5,8,11]. An alternative approach is 

to use Batcher's sorting networks [2]. Although 

these are distributed and also implementable on 

sparse graphs [9] the best bound is again 

O((log N) 2 ), and adaptation to partial permutations 

involves further losses by constant factors. 

The purpose of this paper is to present schemes 

that can realise arbitrary permutations (or even 

partial h-permutations for constant h) in time 

O(logN). The algorithms use randomization [10,13]. 

They are always correct, and terminate in the 

required time with overwhelming probability. They 

have the additional property called testability, 

of having the same probabilistic behaviour for all 

permutation requests. Hence its run time and local 

storage requirements can be determined with 

accuracy by running enough Monte-Carlo simulations 

on any one fixed permutation. 

The ideas in this paper originate from an 
earlier algorithm [16] for which some experimental 
results were reported in [17]. There O(log N) run- 
time was provably achieved for the Boolean n-cube 
(which has degree log N.) IIere we shall first give 
an alternative algorithm for the cube that has a 
simpler and more general proof. We then give 
schemes based on shuffle graphs that, on experiment- 
al evidence, achieve runtime O(log N) with only 
constant degree, and provably achieve o(log N) time 
with o(log N) degree. Finally in Section 8 we give 
a (nontestable) routing scheme for k-dimensional -k 
grid graphs that, essentially, run in time (2k-l)N I/ 
and require local storage for O(log N) packets at 
each node. This should be compared with the im- 
plementations of Batcher's sorters due to Thomson 
and Kunq [15] that can route full permutations in 
time 6~ ~/2 if k= 2 and (3k 2 +k)N Ilk for k > 2. 

The results as stated assume that the trans- 

mission times for all connections are equal and that 

they dominate all other steps. If this condition 

holds then the schemes based on the d-way shuffle 

(Section 6) appear to be ideal. If transmission 

times are proportional to physical distance the above 

assumption is unrealisable unfortunately and it 

becomes logical to use grids for interconnections. 

The schemes of Section 8 then become relevant. 

A good survey of general purpose intercon- 

nection patterns is given by Siegel [12]. For very 

recent work on general purpose parallel computers 

see Schwartz [ii], and Gal~l and Paul [5]. 
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2. A General Class of Parallel Communication 

Schemes 

The schemes considered in this paper all con- 

form to the following pattern of parallel communi- 

cation schemes (PCS): 

(a) There is a directed graph G=(V,E) where V 

is a set of N nodes {O,I,...,N-I}. The nodes all 

have indegree d and outdegree d. llence the 

number of edges is [El = dN. 

(b) There are a total of T atomic packets in 

the system at any time. Each carries with it 

some tickets for book-keeping. Initially the 

tickets contain no information except for the name 

of the packet and its destination address. During 

execution the tickets may be altered. The routing 

of a packet depends, however, only on the current 

contents of its ticket. Such a scheme is said to 

be oblivious (or non-adaptive) if for every packet 

alterations in its ticket never depend on the 

presence, contents or tickets of any other packet. 

(Typically alterations merely record the progress 

made towards the destination.) 

(c) At every integral instant (i.e. t=0,1,2 .... ) 

each packet is at some node. During each unit 

interval (i.e. time period (t,t+l) for some integral 

t) each edge can transmit one packet in the sense 

of its direction. 

(d) At every node there are d queues each one 

associated with one of the edges directed out of 

the node. At the start of each unit interval 

each queue contains a set of packets and the 

queuing discipline determines which one is to 

be at the head of the queue provided the latter 

is nonempty. During the unit interval the head 

of each nonempty queue is transmitted along the 

associated directed edge to the neighbouring 

node. Our results hold for every queuing 

discipline that has the minimal property of 

defining a head for every queue that is nonempty. 

(e) At the end of each unit interval the packets 

at a node may consist of those that have just 

arrived from a neighbouring node, others that have 

been waiting in one of the queues during this last 

interval, and others still that were already finished 

(i.e. had arrived at their final destinations) 

before this interval. The routing algorithm 

decides for each unfinished packet on the basis of 

its ticket which queue it is to be in at that node. 

An initialised scheme is a pair (S,IC) where 

S is a PCS of the kind described in (a)-(e) above, 

and IC describes initial conditions for it. IC 

specifies how the packets and their destinations 

are distributed at time zero. 

Definition If e is an edge in (S,IC) then Traff(e) 

the traffic in e, is the expected number of distinct 

packets that ever pass along e in a run of (S,IC). 

[N.B. Probabilities may enter both through proba- 

bilistic assumptions in IC and through randomization 

in the algorithm.] 

Definition An initialised scheme (S,IC) is symmetric 

iff for any two edges el,e 2 in S, Traff(el)= 

Traff(e2). 

The delay of a packet X in a run of (S,IC) is 

the total number of time units during which X waits 

unserved in queues. Its route is the path taken in 

G. [N.B. The time at which the packet X becomes 

finished is clearly the sum of its route length and 

its delay.] A scheme is nonrepeating if whenever 

two packets take paths ele2...e r and ele 2...es in 

which e =e and e e (k > i) it is the case that 
1 3 k m 

k-i = m-j and for all p (i -<p<k) e = e 
D p+j -i" 

3. Preliminary Facts 

We first prove a lemma that is sufficient to 

guarantee that the later results hold for arbitrary 

queuing disciplines. To state it we define a 

queue line to be a directed path of length n 

with nodes xl,...,Xn+l, edges 

{e i = (xi,xi+l) ll-<i-<n} and a queue qi at each 

node x. (1-< i-< n), together with a set of triples 
l 

{(ij, t , rj)ll-<j <m} that specifies that there 
3 

are m packets Xl,...,Xm, and that for each 

j (1 < j <m) X is added to qi at time t and has 
J . J 

destination xi +r .. 3 

3 3 

A queue line operates like an initialised PCS. 

We denote the delay suffered by X. by 6.. 
3 3 

Clearly X. will leave the system at time 
3 

t. +r. +~.. 
3 3 3 

Fact i If a queue line S contains m packets 

then no packet is delayed by more than m-l. 
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Proof Suppose that packet X in S has the worst delay 

possible in any m-packet line, and w.l.o.g, that all 

packets have destination Xn+ 1 . Then the delay 

suffered by X depends on the queuing discipline in- 

voked by queue q at time t only if X is present in 

q at time t. Hence, without loss of generality, we 

can assume the following queuing discipline: If at 

time t X is in qi then for all t'> t and all 

j >i, queue qj will give preference at time t' to 

packets that entered at x k for some k < j, over any 

packets entering at x.. Clearlv, under this ass~mo- 

tion, any packet that has moved at least one step in 

the system after entering, and is then "ahead" of X, 

will flow at constant speed and will never suffer 

any later delays. 

We choose any packet Y distinct from X. We say 

that "Y delays X at x i at time t" if at instant 

t both X and Y are in qi and Y is chosen to be 

transmitted to xi+ 1 in the interval (t,t+l). 

Suppose now that Y does delay X at x. at time t. 
l 

Then at time t + 1 X will be at xi+ 1. Since Y will 

never be delayed again X and Y will never be in the 

same queue again. Hence Y cannot delay X a second 

time. 

Since there are just m- i choices of Y the 

result follows. 

The remaining results we need concern the est- 

imation of probabilities. Consider N independent 

Bernoulli trials each with probability p of success. 

The probability that at least m of the trials succeed 

is denoted by B(m,N,p). We shall be interested 

in the more difficult case of unequal probabilities. 

The following Theorem of Hoeffding [6] is crucial to 

our analysis. 

Fact 2 If we have N independent Poisson trials with 

respective probabilities, pl,...,p N where Zpi =Np 

and if m ~ Np + 1 is an integer then the probability 

of at least m successes is at most B(m,N,p). 

Finally we need bounds on B(m,N,p) itself: 

Fact 3 If m ~Np is an integer then 

. 

Proof The first inequality is due to Chernoff [4]. 

The second follows immediately from the inequality 

(1 + x-l) x < e in the case that x = (N-m)/(m-Np). 

D 

For m near to Np the following result 

derived from Chernoff's bound is sometimes useful 

[I]. 

Fact 4 If m = Np(l+8) where 0 S 8~ 1 then 

B(m,N,p) Se -~82NP. 

4. A Scheme for the Boolean n-Cube 

We describe a scheme that has the Boolean n- 

dimensional cube as its graph. It shares with our 

later schemes the following two-phase strategy. In 

Phase A it sends each packet to a randomly chosen 

node of the graph, in Phase B it sends it to its 

correct destination. 

(i) The graph, defined for powers of two, N=2 n, 

is G=(V,E) where V = {0,i .... N-I} and 

E = {(x,x//i) Ix £ V, i6{1 ..... n}}. Here x//i de- 

notes the number whose binary representation is the 

same as that of x except in the i th most 

significant bit. 

(ii) The routing algorithm: In each phase each 

packet X has a ticket T that is a vector of 
X 

length n and executes the following program: 

cobegin for i:=1 step 1 until Tx[i+l]=0 or i=n 

do Transmit X from current node y 

to y//Tx[i]; 

coend 

Clearly, T X specifies the sequence in which the 

dimensions are to be traversed. The packets 

execute the above algorithms simultaneously as fast 

as the queues allow. Their routes are predeter- 

mined by their tickets. The rate at which a packet 

progresses on its route does, of course, depend on 

how often other packets share segments of its route. 

(iii) Initialization of tickets. We need two sub- 

routines: If C is a set "Pick c ~ C" means 

"choose an element of C at random, with each 

member having the same probability of being chosen, 

and assign it to c". Given a vector T[l..n] "Pack 

T" means "if there are r non-zero elements in T 

assign these to T[1],...,T[r] in order of occur- 

rence and assign zero to T[r+l], .... T[n]". For 

each packet X its ticket for Phase A is pre- 

eomputed as follows: 
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begin for i:=l step i until n do 

begin T [i]:=i; 
x 

Pick ec{0,1}; 

if ~=0 then Tx[i]:=0 ; 

end; 

Pack TX; 

end. 

The effect of running Phase A with such tickets 

is to send each packet to a randomly chosen node. 

The choices for the packets are independent (and, 

in general, not distinct). For each packet X 

that is sent to node u by Phase A and has 

destination v, a ticket is precomputed for Phase 

B as follows: 

begin for i:=l step 1 until n do 

if ui=v i then  Tx[i]=O e l s e  T x [ i ] = i  ; 

Pack TX; 

end 

It should be clear that rt~nning Phase A to 

completion and then running Phase B constitutes a 

correct routing algorithm. In the next section we 

will show that the two phases when run consecu- 

tively are fast with enormous probability. Sur- 

prisingly, the proof depends only on three general 

properties already defined. These we now verify. 

Both phases are oblivious since the route of 

each packet depends only on random decisions in 

Phase A, and only on its current position relative 

to its destination in Phase B. Each phase is non- 

repeating since if two routes share an edge and 

then diverge, on dimension i say, then the 

remainder of these routes will always differ in 

the i th dimension. Finally we have to verify that 

if the initial conditions IC place exactly h 

packets at every node and every destination 

appears on exactly h packets (i.e. a full 

h-relation) then each phase is symmetric. 

Consider an arbitrary edge (u,v) where ul~v I. 

The packets that pass through (u,v) in Phase A 

are just those that originate for some x such 

that x]=u 3 for every j with i ~ j ~ n. There are 

h2 i such packets. Each one has probability 2 -i 

of being at u after it has traversed dimensions 

l,...,i as directed by its ticket. Since each 

packet has probability one half of then traversing 

(u,v) we conclude that the expected number of 

packets that pass along this edge is 

h2i.2-i.2-1=h/2. Hence the initialised scheme Phase 

A is symmetric. Phase B is run with input supplied 

by Phase A. The argument that Phase B is syrmnetric 

follows by a similar arguement. 

The results of the next section show that the 

above three properties guarantee termination of 

each phase within time K.log2N (K independent of N) 

with overwhelming probability. They also show that 

the same applies if some of the packets are removed 

so as to get a partial h-relation. It is easy to see 

that claims about the phases apply also to the over- 

all algorithm when implemented in the following way: 

Run Phase A; start running Phase B for each packet 

either at time K.log2N, if the packet has finished 

in Phase A by then, or as soon as it has finished 

in Phase A. The algorithm is still correct and 

with overwhelming probability runs in two time- 

disjoint phases as intended. 

5. The General Theorem 

We shall first state the general result and 

then apply it to the scheme of the previous section. 

Theorem 1 In any initialised scheme that is obliv- 

ious, nonrepeating and symmetric, and has (i) N nodes, 

(ii) degree d, (iii) T = hN packets in total, (iv) 

maximal route length ~ , and (v) expected route 

length n , the probability that some packet is 

delayed bi~ at least A units is less than 

T 

--Z-g- J 

where e = 2.71... 

Examole 1 The scheme based on the n-cube has 

d = ~ = n and ~l = n/2 for each phase, where 

N = 2 n. Consider the case of permutations (i.e. 

h = 1 ). The probability that a phase fails to 

finish within time u + A = n + Kn is at most 

IIence for all Ka 2.5 this probability is at most 

4-Kn.2 n ~ N -K. 

In other words the probability of not finishing in 

time (K+l)log2N vanishes rapidly as K increases. 

Proof of Theorem 1 Packet X intersects edge e. 
l 

in a run of the scheme if its route contains e.. 
i 

Consider some fixed route R and name the edges of G 
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that these often occur at different times and hence 

cause no delays. The results did strongly suggest, 

however, that the real delays were so small that the 

most important factor in the run-time of a scheme 

was simply the diameter of the graph. In this res- 

pect the cube is non-optimal since with degree 

d = log2N we may expect every node to be reached 

from every other within distance log~{ = 

log2N/log21og2N rather than log2N as with the 

cube. With this motivation we considered the foll- 

owing family of schemes, called the d-way shuffle, 

indexed by the parameter d. 

(i) The graph, G = (V,E) is defined for N = d n. 

The nodes are V= {O,...,N- i} and the directed edges 

E= { (x,y) I xk-I k =y for each k (2 Sk~ n)} 

where for z £ V z i denotes the i th most significant 

digit in the d-ary representation of the number z. 

In other words there is an edge from x to y if the 

last n- I d-ary digits of y equal the first n- 1 

of x . (N.B. If d = 2 this graph is closely 

related to but not identical with what is known as 

the "shuffle/exchange"graph.) 

(ii) The routing algorithm consists of two phases 

A and B. In each phase each packet X has a ticket 

vector Tx[i] of length n . In each phase the 

packets execute the following program simultaneously 

cobegin for i: = 1 step 1 until n do 

Transmit X from current node y to that 

adjacent node z with z I =T [i]. 
X 

coend. 

(iii) Initialization of tickets. 

Phase A: begin for i: = i step l until n do 

begin Pick ~{ {O, .... d- 1} 

T (i) = a; 
X 

end 

end 

Phase B: Suppose that packet X is at node u 

and destined for node v . 

begin for i = istep i until n 

do Tx[i] : = v i 

end 

It should be clear that Phase A sends each packet to 

a random node, while Phase B then sends it to its 

correct destination. 

Unfortunately our general Theorem 1 cannot be 

applied here directly because the algorithm in its 

present form is neither sy~netric nor non-repeating. 

The problem can be illustrated with d = 2 and n = 4. 

For any u and v there is a length four path between 

u and v. There may, however, be shorter paths also 

e.g. (i011 ÷ iiO1) and (iO11 + iiO1 + O110 + i011 ÷ 

llOl) are two distinct paths between the same pair 

of nodes. Indeed the node OOOO has a self-loop. 

Fortunately we can see easily that given u,v and an 

integer k (O S k N n) there is at most on__ee path of 

length k between u and v. Using this fact we can 

guarantee the algorithm to be non-repeating by mod- 

ifying the ticket preparation as follows in both 

phases: If a packet X at node u is given a ticket 

that sends it to v, modify the ticket so that it 

still sends X to v but does so by the shortest route. 

(Given u and v such a ticket can be found easily by 

trying k = o,l,...,n- I). This new scheme, called 

the modified scheme for the d-way shuffle, is, of 

course, still not symmetric. Luckily direct analysis 

is possible. 

In the proof of Theorem 1 a bound (4) is obtain- 

ed on P using symmetry. The rest of that proof 
X 

assumes only obliviousness and non-repetition. 

IIere we shall give a bound on Px by direct analy- 

sis. The remainder of the argument will follow as 

before. 

Theorem 2 $~en the modified scheme for the d-way 

shuffle is used to implement an h-relation, in both 

phases the probability that some packet is delayed 

by at least A units is less than 

ehn ~A .hN 

where e = 2.71 .... 

Proof First we consider complete h-relations. In 

either phase we consider some fixed route R and 

rename the edges E = {el,...,eNd } so that 

R = ele2...e Let P be the probability that 
r X 

packet x intersects at least one edge in R. Then 
r 

PX 

where Pxi 

edge e 

(i) Phase A: Consider an edge 

For i ~ j S n let 

-< ~ (I') = PXi 

is the probability that X intersects 

e. = (u,v) in R. 
1 
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Lj = {x Ishortest path from x to u has length j- ~. 

Suppose packet X starts at x • L.. If it intersects 
3 

e. then it travels O,l,2,...n-j- i, or n-j units 
z 

after leaving v. Since the outdegree of G is d 

X must be destined for one of at most 
n-j 

d k -< d n-j+1 /(d- i) 

k=O 

out of the N = d n possible nodes. Since the des- 

tinations are randomly chosen with equal probabil- 

ities we conclude that 

PXi -< i/dJ-1(d- i). 

Since the indegree of G is d the total number of 

packets starting at nodes in L is at most hd 3-1.- 
J 

Hence 

n hdJ-1 hn < 
Pxi d d-i 

and from (i') 

~Px ~ ~ ~Pxl ~ hn2/(d - 1) (4') 
X i=l X 

(ii) Phase B: The argument is the mi,rror image 

of the one above for Phase A. Consider an edge 

e. = (u,V) in R. Let 
1 

L. = {x I shortest path from v to x is length j - 1} 
3 

Suppose packet X is destined for x E L.. If it 
] 

intersects e. then it must have travelled 
l 

0,1,2 .... n-j- i or n-j steps before reaching u. 

Hence it could have come from any one of at most 

d n-j+ i/(d-i) out of the d n possible nodes. 

Also the total number of packets with destinations 

in L. is at most hd 3-- 1 Hence, as before, 
3 r 

ZPx = ~ ~Pxi -< hn2/(d-l)" (4') 
X i=l X 

The argument deducing Theorem 1 from relation 

(4) applies here verbatim except that the factor 

~/d is replaced here by n2/(d- 1). 

Finally we note that if we are implementing a 

partial rather than total h-relation the argument 

of Corollary 1 applies here equally. 

Example 3 Consider the d-way shuffle with d = n 

(i.e. N = n n) when realising a partial h-relation 

with h = log2n. The probability of a phase taking 

time more than n + A where A = Knlog2n = Klog2N 

is bounded above by 

I en21og n )ICnl°g2n .nnlog2 n 

If ( ~ o - g ~  n 

(~) Knl°g2n . 22nl°g2 n 

for all n ~ 2 and all K. Hence for some K 
o 

-K 
for all K ~ K the above quantity is at most N 

o 

Example 4 Consider the d-way shuffle with d = n and 

h = i. Then for some K the probability of the 
o 

delay exceeding A = (Knlog2n)/log21og2n is at most 

N -K/2 for all K Z K . This shows that 
o 

O(log N/logloglog N) delay can be achieved using 

degree O(log N/loglog N). 

Examole 5 Consider the d-way shuffle with d = n/log2n 

and h = i. Then for some K o the probability of 
-K 

the delay exceeding A =Knlog2n is again at most N 

for all K a K . Hence time O(log N) is achieved 
o 

with degree O((log N)/(loglog N) 2). 

We conjecture that the runtime is bounded by 

O(log N) even when d is a constant. The exper- 

imental results reported in the next section give 

strong evidence for this. 

7. ExDerimental Results 

The algorithms were simulated by PASCAL programs 

on a VAX 11/780 with the aid of a linear congruential 

random number generator supplied by the system. 

Some evidence for the suitability of this generator 

for the problems in hand was reported in [17]. 

Each experiment consisted of one hundred simul- 

ations. Each simulation was for an individual phase 

of an individual algorithm. Phase B was always 

Supplied with inputs generated by the corresponding 

Phase A. The order of packets in each queue that 

was nonempty when Phase B was about to start, was 

always randomized prior to running Phase B. All the 

experiments recorded here were for the identity perm- 

utation. Other permutations were tried occasionally 

as spot checks to verify consistency. In each case 

the "first-in-first-out" queuing discipline was used. 

The algorithms simulated were the following: 

CUBES: The algorithm for the n-cube described in 

section 4. 

BASIC: The algorithm for the n-cube described in 

[16,17]. It is the same as CUBES except that there 
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is a final operation in ticket preparation after 

"Pack": randomize the order of nonzero elements. 

CUBESS: As CUBES but before "Pack" in ticket prep- 

aration perform the following: Pick k e {O,...,n-l}, 

shift T X cyclicly to the right by k. 

d-SHUFFLE: The (unmodified) scheme described in 

Section 6. 

d-MSHUFFLE: The modified scheme described in Sec- 

tion 6. 

CCC: The graph is the cube-connected cycles [91 with 

each edge directed both ways (i.e. d = 3). Suppose 

cycles are of length s and there are N=s2 s nodes. 

Ticket preparation is essentially as in CUBES except 

that a node on the target cycle has to be specified 

also (i.e. randomly in Phase A, according to destin- 

ation in Phase B.) In between traversing the dim- 

ensions as specified by the ticket the packet trav- 

erses edges of cycles in a predetermined (e.g. clock- 

wise) direction. (N.B. A total of s such cycle- 

edge steps is always sufficient.) On arriving at 

the target cycle the packet takes the shorter path 

to its target (i.e. up to s/2 further steps.) 

SHUFFLE/EXCHANGE. The graph has N = 2 n nodes 

{O,...,N- 1}, and the edges consist of (i) shuffle 

edges (x,y), where y =2x if x<N/2 and 

y = 2x + 1 - N if x ~N/2, and of (ii) exchange edges 

(x,y) where if x is even then y =x+ 1 , and if x 

is odd then y = x - i . Ticket preparation for 

phase A consists of generating a random O- i vector 

of length n. The r th digit indicates whether the 

th 
r bit in the binary representation of the start 

address has to change in the phase. Routing a 

packet may be regarded as an n-stage left shift on 

the binary representation of this address, with the 

destination address being shifted in at the least 

significant binary digit. The packet therefore 

proceeds through n stages, each consisting of a 

shuffle step and, optionally, an exchange step. 

Figures 1,2 and 3 record the mean values 

obtained for each of the following three measures: 

(a) Runtime of Phase A, (b) Runtime of Phase B, and 

(c) maximal node population in Phase A (i.e. the 

maximal number of packets that ever reside at one 

node at one integral time instant in the simulation). 

The last measure is clearly important in determining 

the amount of fast memory needed at each node of an 

implemented PCS. The graphs show the following 

schemes for each relevant value of ~ in the range 

l0 < N < 5000: CUBES, CCC, SHUFFLE/EXC}L~NGE, and 

d-SHUFFLE and d-MSHUFFLE for various values of d. 

We summarize some other features of the experi- 

mental results as follows: 

(i) In no experiment on CUBES, BASIC, CUBESS, 

3-SHUFFLE,...,8-SHUFFLE, 3-MSHUFFLE or 4-MSHUFFLE 

was the variance in either runtime measure (a) or 

(b) greater than 0.6. For 2-SIIUFFLE and 2-MSHUFFLE 

it was never greater than 1.1. 

(fi) In no experiment on either phase of any 

algorithm was the variance in (c) greater than 0.7. 

(iii) CUBES, BASIC and CUBESS had broadly comparable 

performance. In Phase A CUBES and CUBESS both out- 

performed BASIC as far as time (I?) but for node 

population CUBESS was best and CUBES worst of the 

three. For runtime in Phase B BASIC was better 

than both CUBES and CUBESS. 

(iv) The maximal node population in Phase B was 

always found to be less than or about equal to that 

in Phase A. 

(v) For d-SHUFFLE a "furthest-to-go-first-out" 

queuing discipline was tried but this gave only a 

negligible improvement (N.B. For BASIC a substantial 

improvement was found [17]). 

The main conclusion of these e:~eriments is 

that the d-way shuffles give outstanding performance 

even when the degree d is a small constant. 

8. Routing in Sauare Grids 

In previous sections we assumed that trans- 

mission times for all wires were identical. Here 

we shall consider the opposite extreme, the case 

when transmission times are proportional to wire 

length. Under these circumstances a regular array 

of processors is a very reasonable interconnection 

pattern. We first give an algorithm for realising 

permutations in a two-dimensional grid. Later we 

generalise this to k-dimensional grids, for arbitrary 

k. Finally we show that the algorithms need storage 

for only O(log N) packets at each node. The scheme 

for two dimensions is as follows. 

(i) The graph is G=(V,E) where V={[i,j]10 ~i < n, 

0 ~ j < n} and 

E = {([i,j],[l,m])I(i=l and j--mZ1) or (j--m and i=l+l)} 

Clearly there are N=n 2 nodes. They all have degree 
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four except those on the boundaries. 

(ii) The algorithm consists of three phases. Phase 

A randomizes in the first (say vertical) dimension 

Phase Z then corrects in the second dimension. 

Finally Phase B corrects in the first dimension. 

Phase A For a packet at (i,j) Pick ke{0,...,n-l} 

and send the packet along the column to (k,j). 

Phase Z For a packet at (k,j) destined for (l,m) 

send it along the row to (k,m). 

Phase B For a packet at (k,m) destined for (l,m) 

send it along the column to (l,m). 

Since there is one packet initially at each 

node Phase A can be implemented by a continuous 

flow of packets along columns involving no delays 

whatsoever. 

In Phases Z and B any queuing discipline 

with the following property suffices: "packets 

that have already moved in the current phase take 

precedence over any that have not". In these 

phases, therefore, once a packet has started moving 

it never suffers a delay since the packets already 

moving in front of it continue to flow along at a 

constant speed, while those that have not moved 

have lower precedence. Hence the delay to a 

packet starting Phase Z at (k,s)and moving right 

is at most the total number of packets starting the 

phase in {(k,J) lj ~ s}. The corresponding statement 

holds for packets moving left. Both statements 

hold for Phase B with respect to columns. 

At the start of phase Z we have the following 

situation : For each node (k,j) each of the n 

packets originating in column j has probability 

1/n of being at (k,j). Hence for each set of nodes 

{(k,j) Ii ~ ~ s} the probability that there are at 

least s+g packets in total at them at the begin- 

ning of Phase Z is B(s+g, ns, i/n). Since it has 

at most n-s steps to move, this quantity 

B(s+g, ns, l/n) bounds the probability of any one 

packet taking more than time (n-s)+(s+g)=n+g in 

Phase Z. 

When Phase B starts, each packet is randomly 

placed in the column of its destination. IIence 

for each set of nodes {(k,m) Ii ~k ~ s} the proba- 

bility of having at least s+g packets in total 

at them at the beginning of Phase B is B(s+g, n, 

s/n). We conclude, as above, that B(s+g, n, s/n) 

bounds the probability of any one packet taking 

more than time n+g in Phase B. 

Fact 3 gives the same bounds for both 

B(s+g, ns, i/n) and B(s+g, n, s/n), namely 

(s s____~ s+g e g (*) +g] 
If g > 2s then this is less than (s/3s)g.e g = (e/3) g. 

If 2s ag ~ s then it is less than 

(s/2s)3g/2.eg = (e/(2/2)) g 

Fact 4 also gives the same bound for both 2 
-g /2s 

B(s+g, ns, i/n) and B(s+g, n, s/n), namely e 

for s~gZ0. 

Taking g=Kn ~ (say) in each of the above three 

cases yields a bound on the probability of the time 
3 

exceeding n+g = n+Kn ~ for all values of s 

(i ~ s Sn). For an appropriate constant C < I in 

all. three ranges this Drobability is bounded by 

~ 
2 

Since there are n packets altogether in 

any one of the three phases the probability that 
3 

at least one ~acket takes time more than n+Kn ~ is 
2-Kn~ 

at most n C We therefore conclude: 

Theorem 3 There is a PCS for the n × n grid graph 

with the following property: There is a constant 

C < 1 such that when realising any permutation the 

nrobability that at least one packet ~as not finished 

in tlme 3n + 2Kn % is less than C Kn-. 

The proof applies directly to partial permu- 

tations. Also, the generalization to h-relations 

is obvious. 

It remains to show that the above algorithm 

is m~rely an instance of a family cf schemes that 

apply to any number of dimensions. Consider the 

k dimensional cube with each side of length n. 

Let G be the graph formed by placing a node 
n,k 

at each point with integer co-ordinates, and a 

pair of oppositely directed edges between every 

pair of such points separated by unit distance. 

The routing algorithm now works in time (2k-l)n 

(2k-l) N 1/k k or where N=n is the total number of 

nodes. 

The algorithm is recursive in the number of 

dimensions. Route (n, k, m) is a procedure for 

routing (partial) permutations in an m-dimensional 

subcube of Gn, k. Denoting the dimensions by 
i 

1,2,...,k, a subcube of G is any set of n 
n,i 

nodes obtained by fixing a final segment 
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i+l,...,k of the dimensions 1,2,...,k 

The overall algorithm consists of a single 

call of Route (n,k,k) with one packet initially at 

each node, all with distinct destination addresses. 

The action of the routine on a packet X present in 

the relevant subcube is described below: 

procedure Route (n,k,m) 

begin if m=l then send X in dimension i so as to 

agree in dimension i with its destination, 

else begin (Phase A): Send X along dimension m 

randomly; 

Route (n,k,m-l) for each G subcube 
n,m~l 

of G ; 
n,m 

(Phase B): Send X along dimension m so as 

to agree in dimension m with its destina- 

tion; 

end; 

end; 

The behaviour of Route (n,k,m) can be charac- 

terised by the following pair of predicates: 

Precondition: For each node x of G each of the 
k-m n,m 

n packets originating at nodes of Gn, k with 

dimensions i,... ,m agreeing with x has probability 
m-k 

n of being present at x. (The rest have proba- 

bility zero of being at x). For any one choice of 

G the n k probabilities so defined are mutually 
n,m 

independent. 

Postcondition: For each node x of G each of 
k-m n,m 

the n packets whose destination address 

agrees with x in dimensions 1,2,...,m, 

has probability n m-k of being present at x. (The 

rest have probability zero of being at x.) For 

any one choice of G the n k probabilities so 
n,m' 

defined are mutually independent. 

It is immediate that if Route (n,k,k) is 

called to realise a permutation, the precondition 

holds before execution. For showing correctness 

of the overall algorithm we have to verify that 

the postcondition holds after this call is com- 

pleted. Now this can be proved easily by 

induction. First note that for a call of 

Route (n,k,1) the precondition implies the post- 

condition. Also, before each call of Route (n,k,m) 

the precondition holds. Finally we have to observe 

that if the precondition implies the postcondition 

for Route (n,k,m) then it does so also for Route 

(n,k,m + i), for any m (i ~m <k). 

To bound the probability of Phase A of a call 

of Route (n,k,m) taking time at least n+g we con- 

sider a packet X moving in the positive direction 

along dimension m in this call, and starting at x 

With coordinate value S in this dimension. The 

probability that it will suffer delay at least g 

will be bounded b, 1 the probability that there are 

altogether at least s+g packets at nodes agreeing 

with x in all but the m th dimension, and with their 
th 

m coordinate equal to at most s. By the pre- 

condition this is at most 

k-m nm-k). 
B(s+g, sn , 

By the same argument but using the postcondi- 

tion we deduce that the probability of delay g 

to a packet X in Phase B of a call of Route (n,k,m) 

is at most 

B(s+g, n k - m + l  s n  m - k - l )  

Both the above expressions are bounded by (*). 

and hence for some C < 0 the probability of the 

runtime exceeding n+Kn % for any packet X for any 

Phase in any call is bounded above by --~Kn½. But 

there are only n k packets, l+n+n2+...+n k-I 

procedure calls, and two phases. IIence the pro- 

bability that at least one packet fails to finish 

at least one nhase in time n+Kn ~ is at most 

2n2kc E/%~ ~ C Kn~ for an appropriate C < I. 

Theorem 4 There is a PCS for the k dimensional 

grid graph with N=n k nodes that has the following 

property: There is a constant C < i such that 

when realizing any permutation the probability that 

at least one packet has not finished in time 

(2k-l) (n+Kn~ 

is less than C Kn½. 

The PCS that satisfies the Theorem is merely 

the routing algorithm with each Phase given n+Kn ~ 

time. If a Phase does not finish in this time an 

arbitrary correct routing algorithm can be invoked 

for the remainder of the computation. Generali- 

zations of Theorem 4 to partial h-relations are 

easy. 

From the precondition and postcondition it is 

also clear that in~uediately before or after any 

recursive call of Route in a run of Route (n,k,k), 
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at any node the probability of there being more than 

f packets present there is at most 

B(nk-m,f,n m-k) 

for some m (i ~m~k). By Fact 3 this is at most 

f - f  f-1 .e ~ N -K 

if f = Klog2N and K is large enough. Also at 

any node at any instant during any call of Route 

(n,k,1) the estimate holds also (to within a fac- 

tor) since there can be at most one packet "in tran- 

sit" that neither started the phase there nor fin- 

ishes there. Hence for any fixed k an allocation 

of space for Klog2N packets at each node is suff- 

icient with overwhelming probability. 

If the storage restriction is relaxed then 

fast algorithms are easier to find. As an example 

the re~der should construct a deterministic distrib- 

uted routing algorithm for G that takes time 
n,2 

2n but may need space for up to n packets at a 

node. 
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