
DOI: 10.1007/s00224-004-1195-x

Theory Comput. Systems 38, 229–248 (2005) Theory of
Computing

Systems
© 2004 Springer Science+Business Media, Inc.

Space Efficient Hash Tables with Worst Case
Constant Access Time∗

Dimitris Fotakis,1 Rasmus Pagh,2 Peter Sanders,3 and Paul Spirakis4

1 Department of Information and Communication Systems Engineering,
University of the Aegean, 83200 Karlovasi, Samos, Greece
fotakis@aegean.gr

2 IT University of Copenhagen,
DK1017 Copenhagen K, Denmark
pagh@itu.dk

3 Fakultät für Informatik, Universität Karlsruhe,
76128 Karlsruhe, Germany
sanders@ira.uka.de

4 Computer Technology Institute,
26110 Patras, Greece
spirakis@cti.gr

Abstract. We generalize Cuckoo Hashing [23] to d-ary Cuckoo Hashing and
show how this yields a simple hash table data structure that stores n elements
in (1 + ε) n memory cells, for any constant ε > 0. Assuming uniform hashing,
accessing or deleting table entries takes at most d = O(ln(1/ε)) probes and the
expected amortized insertion time is constant. This is the first dictionary that has
worst case constant access time and expected constant update time, works with
(1+ ε) n space, and supports satellite information. Experiments indicate that d = 4
probes suffice for ε ≈ 0.03. We also describe variants of the data structure that allow
the use of hash functions that can be evaluated in constant time.

∗ A preliminary version of this work appeared in the Proceedings of the 20th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 2003), Lecture Notes in Computer Science 2607. This work
was partially supported by DFG Grant SA 933/1-1 and the Future and Emerging Technologies programme
of the EU under Contract Number IST-1999-14186 (ALCOM-FT). The present work was initiated while the
second author was at BRICS, Aarhus University, Denmark. Most of this work was done while the authors were
at the Max-Planck-Institut für Informatik, Saarbrücken, Germany.

230 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

1. Introduction

The efficiency of many programs crucially depends on hash table data structures, because
they support constant expected access time. Also, hash table data structures that support
worst case constant access time have been known for quite some time [12], [9]. Such
worst case guarantees are relevant for real time systems and parallel algorithms where
delays of a single processor could make all the others wait. A particularly fast and simple
hash table with worst case constant access time is Cuckoo Hashing [23]: Each element
is mapped to two tables t1 and t2 of size (1 + ε) n using two hash functions h1 and h2,
for any ε > 0. A factor above two in space expansion is sufficient to ensure with high
probability that each element e can be stored either in t1[h1(e)] or t2[h2(e)]. The main
trick is that insertion moves elements to different table positions to make room for the
new element.

To our best knowledge, all previously known hash tables with worst case constant
access time and sublinear insertion time share the drawback of a factor of at least two in
memory blowup. In contrast, hash tables with only expected constant access time that
are based on open addressing can work with memory consumption (1 + ε) n. In the
following, ε stands for an arbitrary positive constant.

The main contribution of this paper is a hash table data structure with worst case con-
stant access time and memory consumption only (1+ε) n. The access time is O(ln(1/ε))
which is in some sense optimal, and the expected insertion time is also constant. The
proposed algorithm is a rather straightforward generalization of Cuckoo Hashing to d-
ary Cuckoo Hashing: each element is stored at the position dictated by one out of d
hash functions. In our analysis, insertion is performed by Breadth First Search (BFS) in
the space of possible ways to make room for a new element. In order to ensure that the
amount of memory used for bookkeeping in the BFS is negligible, we limit the number
of nodes that can be searched to o(n), and perform a rehash if this BFS does not find a
way of accommodating the elements. For practical implementation, a random walk can
be used. Unfortunately, the analysis that works for the original (binary) Cuckoo Hashing
and (log n)-wise independent hash functions [23] breaks down for d ≥ 3. Therefore we
develop new approaches and give an analysis of the simple algorithm outlined above
for the case that hash functions are truly random. As observed by Dietzfelbinger [6],
similar results can be obtained using an explicit family of constant time evaluable hash
functions based on [21] or [10].

We also provide experimental evidence which indicates that d-ary Cuckoo Hashing
is even better in practice than our theoretical performance guarantees. For example, at
d = 4, we can achieve 97 % space utilization and at 90 % space utilization, insertion
requires only about 20 memory probes on the average, i.e., only about a factor two more
than for d = ∞.

We also present Filter Hashing, an alternative to d-ary Cuckoo Hashing that uses
polynomial hash functions of degree O(

√
d). It has the same performance as d-ary

Cuckoo Hashing except that it uses d = O(ln2(1/ε)) probes for an access in the worst
case.

A novel feature of both d-ary Cuckoo Hashing (in the variant implemented for the
experiments) and Filter Hashing is that we use several small hash tables with only a single
possible location for each element and table. Traditional hashing schemes use large hash

Space Efficient Hash Tables 231

tables where good space utilization is achieved by having many possible locations for
each element.

1.1. Related Work

Space Efficient Dictionaries. A dictionary is a data structure that stores a set of ele-
ments, and associates some piece of information with each element. Given an element, a
dictionary can look up whether it is in the set, and, if so, return its associated information.
Usually elements come from some universe of bounded size. If the universe has size m,
the information theoretical lower bound on the number of bits needed to represent a set of
n elements (without associated information) is B = n log(em/n)−�(n2/m)−O(log n).
This is roughly n log n bits less than, say, a sorted list of elements. If log m is large com-
pared with log n, using n words of log m bits is close to optimal.

A number of papers have given data structures for storing sets in near-optimal space,
while supporting efficient lookups of elements, and other operations. Cleary [4] showed
how to implement a variant of linear probing in space (1+ ε)B + O(n) bits, under the
assumption that a truly random permutation on the key space is available. The expected
average time for (failed) lookups and insertions is O(1/ε2), as in ordinary linear probing.
A space usage of B+o(n)+O(log log m)bits was obtained in [22] for the static case. Both
these data structures support associated information using essentially optimal additional
space.

Other works have focused on dictionaries without associated information. Brodnik
and Munro [3] achieve space O(B) in a dictionary that has worst case constant lookup
time and amortized expected constant time for insertions and deletions. The space usage
was recently improved to B + o(B) bits by Raman and Rao [24]. Since these data
structures are not based on hash tables, it is not clear that they extend to support associated
information. In fact, Raman and Rao mention this extension as a goal of future research.

Our generalization of Cuckoo Hashing uses a hash table with (1 + ε) n entries of
log m bits. As we use a hash table, it is trivial to store associated information along with
elements. The time analysis depends on the hash functions used being truly random. For
many practical hash functions, the space usage can be decreased to (1+ε) B+O(n) bits
using quotienting (as in [4], [22]). Thus, our scheme can be seen as an improvement of
the result of Cleary to worst case lookup bounds (even having a better dependence on ε
than his average case bounds). However, there remains a gap between our experimental
results for insertion time and our theoretical upper bound, which does not beat Cleary’s.

Open Addressing Schemes. Cuckoo Hashing falls into the class of open addressing
schemes, as it places keys in a hash table according to a sequence of hash functions. The
worst case O(ln(1/ε)) bound on lookup time matches the average case bound of classical
open addressing schemes like double hashing. Yao [29] showed that this bound is the
best possible among all open addressing schemes that do not move elements around in
the table. A number of hashing schemes move elements around in order to improve or
remove the dependence on ε in the average lookup time [1], [13], [16], [17], [25].

In the classical open addressing schemes some elements can have a retrieval cost of
�(log n/log log n). Bounding the worst case retrieval cost in open addressing schemes
was investigated by Rivest [25], who gave a polynomial time algorithm for arranging

232 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

keys so as to minimize the worst case lookup time. However, no bound was shown on
the expected worst case lookup time achieved. Rivest also considered the dynamic case,
but the proposed insertion algorithm was only shown to be expected constant time for
low load factors (in particular, nothing was shown for ε ≤ 1).

Matchings in Random Graphs. Our analysis uses ideas from two seemingly unrelated
areas that are connected to Cuckoo Hashing by the fact that all three problems can be
understood as finding matchings in some kind of random bipartite graphs.

The proof that space consumption is low is similar in structure to the result in [28]
and [27] that two hash functions suffice to map n elements (disk blocks) to D places
(disks) such that no disk gets more than
n/D�+1 blocks. The proof details are quite
different however. In particular, we derive an analytic expression for the relation between
ε and d . Similar calculations may help to develop an analytical relation that explains for
which values of n and D the “+1” in
n/D�+1 can be dropped. In [27] this relation was
only tabulated for small values of n/D.

The analysis of insertion time uses expansion properties of random bipartite graphs.
Motwani [19] uses expansion properties to show that the algorithm by Hopcroft and
Karp [14] finds perfect matchings in random bipartite graphs with m > n ln n edges in
expected time O(m log n/log log n). He shows an O(m log n/log d) bound for the d-out
model of random bipartite graphs, where all nodes are constrained to have degree at least
d ≥ 4.

Our analysis of insertion can be understood as an analysis of a simple incremental
algorithm for finding perfect matchings in a random bipartite graph where n nodes on
the left side are constrained to have constant degree d whereas there are (1+ ε) n nodes
on the right side without a constraint on the degree. We feel that this is a more natural
model for sparse graphs than the d-out model because there seem to be many applications
where there is an asymmetry between the two node sets and it is unrealistic to assume a
lower bound on the degree of a right node (e.g., [28], [26], and [27]).

Under these conditions we get linear run time even for very sparse graphs using a
very simple algorithm that has the additional advantage of allowing incremental addition
of nodes. The main new ingredient in our analysis is that besides expansion properties,
we also prove shrinking properties of nodes not reached by a BFS. An aspect that makes
our proof more difficult than the case in [19] is that our graphs have weaker expansion
properties because they are less dense (or less regular for the d-out model).

1.2. Overview

In Section 2 we introduce Cuckoo Hashing as a matching problem in a class of random
bipartite graphs. Section 3 constitutes the main part of the paper. In Section 3.1 we prove
that for d ≥ 2(1 + ε) ln(e/ε) and truly random hash functions, d-ary Cuckoo Hashing
results in bipartite graphs which contain a matching covering all left vertices/elements
with high probability (henceforth “whp”1). In Section 3.2 we show that for somewhat
larger values of d, an incremental algorithm which augments along a shortest augment-
ing path takes (1/ε)O(ln d) expected time per element and visits at most o(n) vertices

1 In this paper “whp” means “with probability at least 1− O(1/n).”

Space Efficient Hash Tables 233

before it finds an augmenting path whp. Section 4 complements the theoretical analysis
with experiments which justify the practical efficiency of d-ary Cuckoo Hashing. Filter
Hashing is presented and analyzed in Section 5. We show that for d = �(ln2(1/ε))
and polynomial hash functions of degree O(ln(1/ε)), Filter Hashing stores almost all
elements (e.g., at least (1− ε/4)n of them) in n memory cells whp. Some directions for
further research and a modification of d-ary Cuckoo Hashing for hash functions that can
be evaluated in constant time are discussed in Section 6.

2. Preliminaries

A natural way to define and analyze d-ary Cuckoo Hashing and Filter Hashing is through
matchings in random bipartite graphs. The elements can be thought of as the left vertices
and the memory cells as the right vertices of a bipartite graph B(L , R, E). The edges of
B are determined by the hash functions. An edge connecting a left vertex to a right vertex
indicates that the corresponding element can be stored in the corresponding memory cell.
Any one-to-one mapping of elements/left vertices to memory cells/right vertices forms
a matching in B. Since every element is stored in some cell, this matching is L-perfect,
i.e., it covers all the left vertices of B.

Having fixed an L-perfect matching M , we can think of B as a directed graph,
where the edges in E\M are directed from left to right and the edges in M are directed
from right to left (Figure 1). Therefore, each right vertex has outdegree at most one. The
set of free vertices F ⊆ R simply consists of the right vertices with no outgoing edges
(i.e., zero outdegree). Then any directed path from an unmatched left vertex v to F is an
augmenting path for M , because if we reverse the edge directions along such a path, we
obtain a new matching which also covers v.

We always use X to denote a set of left vertices and Y to denote a set of right vertices.
For a set of left vertices X , let M(X) denote the set of X ’s mates according to the current
matching M . For a set of vertices S ⊆ L ∪ R, let �(S) denote the neighborhood of S,
i.e., �(S) = {v: {u, v} ∈ E, u ∈ S}. We should emphasize that whenever we use �(S)
or refer to the neighborhood of a vertex set, we consider the edges as undirected.

In the analysis of d-ary Cuckoo Hashing, we repeatedly use the following upper
bound on binomial coefficients.

h1

h2

h3

Fig. 1. Ternary Cuckoo Hashing (d = 3).

234 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

Proposition 1. Given an integer n, for any integer k, 1 ≤ k ≤ n,

(
n

k

)
≤
(

n

n − k

)n−k(n

k

)k
.

Proof. For completeness, we give a simple proof communicated to us by Dietzfelbinger
[6]. Let µ = k/n ∈ (0, 1]. We observe that(

n

k

)
µk(1− µ)n−k ≤

n∑
j=0

(
n

j

)
µ j (1− µ)n− j

= (µ+ (1− µ))n = 1,

which implies the proposition.

3. d-Ary Cuckoo Hashing

In d-ary Cuckoo Hashing, we consider n elements stored in (1+ε)n memory cells. Each
element is stored in one out of d cells chosen uniformly at random and independently
with replacement. Consequently, the resulting bipartite graph B(L , R, E) has |L| = n
and |R| = (1 + ε)n. Each left vertex has exactly d neighbors selected uniformly at
random and independently (with replacement) from R.

3.1. Existence of an L-Perfect Matching

We start by proving that for sufficiently large values of d, such bipartite graphs contain
an L-perfect matching whp.

Lemma 1. Given a constant ε ∈ (0, 1), for any integer d ≥ 2(1 + ε) ln(e/ε), the
bipartite graph B(L , R, E) contains an L-perfect matching with probability at least
1− O(n4−2d).

Proof. We establish a bound of O(n4−2d) on the probability that there exists a set of left
vertices X having less than |X | neighbors. Then the lemma follows from Hall’s theorem
(e.g., Chapter 2 of [5]), which states that a bipartite graph contains an L-perfect matching
if and only if any X ⊆ L has at least |X | neighbors.

For each integer k, 2 ≤ k ≤ n, let P(k) be the probability that there exists a set of
k left vertices with at most k neighbors. The probability that the bipartite graph B does
not contain an L-perfect matching is bounded by the sum of the probabilities P(k) over
all integers 2 ≤ k ≤ n.

For an integer k, we fix a set of left vertices X and a set of right vertices Y both of
size k. The probability that Y includes all neighbors of X is (k/(1+ ε)n)dk . Multiplying
by the number of different sets X and Y , we obtain that

P(k) ≤
(

n

k

)(
(1+ ε)n

k

)(
k

(1+ ε)n
)dk

.

Space Efficient Hash Tables 235

For k = 2, the probability that there exists a pair of left vertices with a single neighbor in
R is O(n3−2d). Let c be a sufficiently large constant. For k ≤ n/c, using

(n
k

) ≤ (en/k)k ,
we obtain that P(k) ≤ e2kk(d−2)k/n(d−2)k . If c > ed/(d−2), the right-hand side of the
inequality above is a non-increasing function of k and cannot exceed O(n3−2d), for any
d ≥ 3. Therefore, for any 3 ≤ k ≤ n/c, P(k) = O(n3−2d).

For n/c < k ≤ n, let µ = k/n ∈ (0, 1]. Using Proposition 1, we obtain the
following bound on the probability P(µn):

P(µn) ≤
[(

1

1− µ
)1−µ(1

µ

)µ(1+ ε
1+ ε − µ

)1+ε−µ(1+ ε
µ

)µ(
µ

1+ ε
)dµ

]n

.

The value of d should make the quantity in square brackets strictly smaller than 1.
Solving the resulting inequality, we obtain the following lower bound on d:

d>1+µ ln(1/µ)+(1−µ) ln(1/(1−µ))+(1+ε−µ) ln((1+ε)/(1+ε−µ))
µ ln((1+ε)/µ) . (1)

To simplify inequality (1), we observe that:

1. For all ε ∈ (0, 1) and µ ∈ (0, 1], µ ln(1/µ) < µ ln((1+ ε)/µ).
2. For any fixed value of ε ∈ (0, 1), ((1+ε−µ) ln((1+ε)/(1+ε−µ))/(µ ln((1+
ε)/µ)) is a non-decreasing function of µ in the interval (0, 1]. Hence, it is
maximized for µ = 1 achieving the value of (ε ln((1+ ε)/ε))/ ln(1+ ε).

We also need the following proposition.

Proposition 2. For all ε ∈ (0, 1) and µ ∈ (0, 1],

(1− µ) ln(1/(1− µ))
µ ln((1+ ε)/µ) ≤ ε ln((1+ ε)/ε)

ln(1+ ε) .

Proof. For any fixed ε ∈ (0, 1), we distinguish between µ ∈ (0, 1/(1 + ε)] and
µ ∈ (1/(1+ ε), 1].

Case A. Let µ ∈ (0, 1/(1+ ε)]. Then

(1− µ) ln(1/(1− µ))
µ ln((1+ ε)/µ) ≤ (1− µ) ln(1/(1− µ))

µ ln(1/µ)
= g1(µ).

The function g1(µ) is strictly increasing with µ and

g1

(
1

1+ ε
)
= ε ln((1+ ε)/ε)

ln(1+ ε) .

Case B. Let µ ∈ (1/(1+ ε), 1]. Then

(1− µ) ln(1/(1− µ))
µ ln((1+ ε)/µ) ≤ (1− µ) ln(1/(1− µ))

µ ln(1+ ε) = g2(µ).

236 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

The function g2(µ) is strictly decreasing with µ and

γ2

(
1

1+ ε
)
= ε ln((1+ ε)/ε)

ln(1+ ε) .

Consequently, for every integer d ≥ 2+(2ε ln((1+ ε)/ε))/ln(1+ ε)), the bipartite
graph B contains an L-perfect matching with probability at least 1− O(n4−2d). A brief
calculation using ln(1 + ε) > ε − ε2/2 shows that the above inequality is satisfied
whenever d ≥ 2(1+ ε) ln(e/ε).

By directly applying inequality (1) for specific values of ε, we obtain that if ε ≥ 0.57
and d = 3, if ε ≥ 0.19 and d = 4, and if ε ≥ 0.078 and d = 5, the bipartite graph
B contains an L-perfect matching whp. The experiments in Section 4 indicate that for
d = 3, 4, 5, even smaller values of ε are possible.

We also show that the bound of Lemma 1 on d is essentially best possible.

Lemma 2. If d < (1 + ε) ln(1/ε) then B(L , R, E) does not contain a perfect
matching whp.

Proof. We can think of the right vertices as bins and the edges as balls. Each ball
is placed in a bin selected uniformly at random and independently. We have exactly
(1+ ε) n bins and dn balls. The expected number of empty bins/isolated right vertices
approaches (1+ ε) n e−d/(1+ε) as n goes to infinity (e.g., Chapter 3 of [20].). Let β be a
positive constant. For n larger than a suitable constant, if d is smaller than (1+ε) ln((1+
ε)/(1+β)ε), the expected number of isolated right vertices is greater than (1+β/2)εn.
Furthermore, since the events “the right vertex v is isolated” are negatively associated
(e.g., [11]), we can apply the Chernoff bound (e.g., Chapter 4 of [20]) and show that if
d < (1 + ε) ln((1 + ε)/(1 + β)ε), the number of isolated right vertices is greater than
εn whp. Clearly, a bipartite graph B with more than εn isolated right vertices cannot
contain an L-perfect matching. The lemma is obtained by setting β = ε.

3.2. The Insertion Algorithm

To formulate and analyze the insertion algorithm for d-ary Cuckoo Hashing, we as-
sume that the left vertices of the bipartite graph B arrive (along with their d random
choices/edges) one-by-one in an arbitrary order and the algorithm incrementally main-
tains an L-perfect matching in B.

Let M be an L-perfect matching fixed before a left vertex v arrives. We recall that
the edges in M are considered to be directed from right to left, while the edges not in M
are directed from left to right. All the edges of v are initially directed from left to right,
because v is not matched by M . We also recall that any directed path from v to the set
of free vertices F is an augmenting path for M .

The insertion algorithm we analyze always augments the current matching along
a shortest directed path from v to F . Such a path can be found by the equivalent of a
Breadth First Search (BFS) in the directed version of B, which is implicitly represented
by the d hash functions and the storage table. We ensure space efficiency by restricting
the number of right vertices the BFS can visit to o(n).

Space Efficient Hash Tables 237

To avoid having to deal with dependencies among the random choices of a newly
arrived left vertex and the current matching, we restrict our attention to the case where a
left vertex that has been deleted from the hash table cannot be re-inserted.2 The remaining
section is devoted to the proof of the following theorem.

Theorem 1. For every positive ε < 1
5 and integer d ≥ 5+ 3 ln(1/ε), the incremental

algorithm that augments along a shortest augmenting path takes (1/ε)O(ln d) expected
time per left vertex/element to maintain an L-perfect matching in B. Moreover, the
algorithm visits at most o(n) right vertices before it finds an augmenting path whp.

Remark. Using the same techniques, we can prove that Theorem 1 holds for any
ε ∈ (0, 1). For ease of exposition, we restrict our attention to the most interesting case
of small ε.

Augmentation Distance. In the proof of Theorem 1, we measure the distance from a
vertex v to the set of free vertices F by only accounting for the number of left to right
edges (free edges for short), or, equivalently, the number of left vertices appearing in a
shortest path (respecting the edge directions) from v to F . We refer to this distance as
the augmentation distance of v. We should emphasize that the augmentation distance
of a vertex depends on the current matching M . The augmentation distance of a vertex
v essentially measures the depth at which a BFS starting from v reaches F for the first
time. Therefore, if a new left vertex has a neighbor at augmentation distance λ, a shortest
augmenting path can be found in O(dλ+1) time and space. To establish Theorem 1, we
bound the number of right vertices at large augmentation distance.

Outline. The proof of Theorem 1 is divided into three parts. We first prove that the
number of right vertices at augmentation distance at most λ grows exponentially with λ,
whp, until almost half of the right vertices have been reached. We call this the expansion
property. We next prove that for the remaining right vertices, the number of right vertices
at augmentation distance greater than λ decreases exponentially with λ, whp. We call
this the shrinking property. The proofs of both the expansion property and the shrinking
property are based on the fact that for an appropriate choice of d, d-ary Cuckoo Hashing
results in bipartite graphs which are good expanders, whp. Finally, we put the expansion
property and the shrinking property together to show that the number of right vertices
encountered by a BFS before an augmenting path is found is at most o(n) whp, and the
expected insertion time per element is constant.

Notation. For an integer λ, let Yλ denote the set of right vertices at augmentation
distance at most λ, and let Xλ denote the set of left vertices at augmentation distance
at most λ. The sets Xλ and Yλ can be computed inductively starting from the set of
free vertices F . For λ = 0, Y0 = F and X0 = ∅. For any integer λ ≥ 1, we have
Xλ+1 = �(Yλ) and Yλ+1 = M(Xλ+1) ∪ F .

2 This restriction on deletions is easily overcome by just marking deleted elements, and only removing
them when periodically rebuilding the hash table with new hash functions.

238 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

The Expansion Property. We first prove that if d is chosen appropriately large, every
set of right vertices Y of size in the interval [εn, 3n/8] expands by a factor no less than 4

3
whp (Lemma 3). This implies that the number of right vertices at augmentation distance
at most λ is at least (1+ 4

3
λ
)εn, as long as λ is so small that this number does not exceed

(1
2 + ε)n (Lemma 5).

Lemma 3. Given a constant ε ∈ (0, 1
5), let d ≥ 5+ 3 ln(1/ε) be an integer. Then the

probability that every set of right vertices Y , εn ≤ |Y | ≤ 3n/8, has at least 4 |Y |/3
neighbors is at least 1− 2−�(n).

Proof. We first establish the following lemma whose proof is similar to the proof of
Lemma 1.

Lemma 4. Given a constant ε ∈ (0, 1
5), let δ be any positive constant not exceeding

4(1− 4ε)/(1+ 4ε), and let d be any integer such that

d ≥ 3+ 2ε + 2δ(1+ ε)+ (2+ δ)ε ln((1+ ε)/ε)
ln(1+ ε) .

Then the probability that every set of left vertices X , n/2 ≤ |X | ≤ (1− (1+ δ)ε)n, has
at least (1+ ε)n − (n − |X |)/(1+ xδ) neighbors is at least 1− 2−�(n).

Proof. Let µ be any number in the interval [ε, 1/2(1+ δ)] such that (1− (1+ δ)µ)n
is an integer. For simplicity of presentation and without loss of generality, we assume
that (1+ ε−µ)n is also an integer. Let P(µ) be the probability that the bipartite graph
B contains a set of left vertices X of size (1 − (1 + δ)µ)n with at most (1 + ε − µ)n
neighbors in R. We bound the probability that the graph B does not satisfy the conclusion
of the lemma by the sum of the probabilities P(µ) over all the different values of µ for
which (1− (1+ δ)µ)n is an integer.

For a fixed value of µ, we fix a set of left vertices X of size (1 − (1 + δ)µ)n and
a set of right vertices Y of size (1 + ε − µ)n. The probability that all neighbors of X
are included in Y is ((1+ ε − µ)/(1+ ε))d(1−(1+δ)µ)n . Multiplying by the number of
different sets X and Y , we obtain the following upper bound on P(µ):

P(µ) ≤
(

n

(1+ δ)µn

)(
(1+ ε)n
µn

)(
1+ ε − µ

1+ ε
)d(1−µ(1+δ))n

.

Using Proposition 1 and working as in the proof of Lemma 1, we obtain the following
lower bound on d:

d >
(1− µ(1+ δ)) ln

(
1

1−(1+δ)µ
)
+ (1+ δ)µ ln

(
1

(1+δ)µ
)

(1− µ(1+ δ)) ln
(

1+ε
1+ε−µ

)

+
(1+ ε − µ) ln

(
1+ε

1+ε−µ
)
+ µ ln

(
1+ε
µ

)
(1− µ(1+ δ)) ln

(
1+ε

1+ε−µ
) .

Space Efficient Hash Tables 239

For all ε ∈ (0, 1
5) and δ ∈ (0, 4(1 − 4ε)/(1 + 4ε)], the right-hand side of the above

inequality is maximized for µ = ε yielding the following lower bound on d:

d >
(1− ε(1+ δ)) ln

(
1

1−(1+δ)ε
)
+ (1+ δ)ε ln

(
1

(1+δ)ε
)

(1− ε(1+ δ)) ln(1+ ε)

+ ln(1+ ε)+ ε ln
(

1+ε
ε

)
(1− ε(1+ δ)) ln(1+ ε) . (2)

The right-hand side of inequality (2) can be simplified by observing that

ln

(
1

(1+ δ)ε
)
< ln

(
1+ ε
ε

)
.

In addition, for all δ ∈ (0, 4(1− 4ε)/1+ 4ε],

1

1− (1+ δ)ε ≤ 1+ 2ε(1+ δ), and
ln
(

1
1−(1+δ)ε

)
ln(1+ ε) ≤ 2(1+ δ).

Sinceµ ≥ ε and there are at most n different values ofµ to consider, the probability
that the graph B does not have the claimed property is at least 1 − O(nβn), for some
constant β < 1 depending on the choice of d.

Then we show that every bipartite graph B satisfying the conclusion of Lemma 4
also satisfies the conclusion of Lemma 3. To reach a contradiction, we assume that for
some µ ∈ [ε, 1/2(1 + δ)], there is a set Y ⊆ R of size µn with less than (1 + δ)µn
neighbors in L . Let X be the set of left vertices not included in the neighborhood of Y .
Then X consists of more than (1− (1+ δ)µ)n vertices. By Lemma 4, X must have more
than (1+ ε−µ)n neighbors in R, which implies that some vertices of Y have neighbors
in X , a contradiction to the definition of X .

To conclude the proof of Lemma 3, we observe that for ε < 1
5 , we can take δ = 1

3 .
Using the fact that ln(1+ ε) > ε − ε2/2, the requirement of inequality (2) on d can be
seen to be satisfied if d ≥ 5+ 3 ln(1/ε).

The following lemma concludes the proof of the expansion property.

Lemma 5. Let B(L , R, E) be a bipartite graph satisfying the conclusion of Lemma 3.
Then, for every integer λ, 1 ≤ λ ≤ log4/3(1/2ε), the number of right vertices at aug-
mentation distance at most λ is at least (1+ (4

3)
λ)εn.

Proof. We prove the lemma by induction on λ. We recall that Yλ denotes the set of
right vertices at augmentation distance at most λ. Since the bipartite graph B satisfies
the conclusion of Lemma 3, every set of right vertices Y , εn ≤ |Y | ≤ 3n/8, expands
by a factor no less than 4

3 . The lemma holds for λ = 1, because |Y0| = |F | ≥ εn and,
hence, at least (1+ 4

3)εn right vertices are included in Y1.

240 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

For some integer λ, 1 ≤ λ ≤ log4/3(1/2ε) − 1, let |Yλ| ≥ (1 + (4
3)
λ)εn. Then the

neighborhood of Yλ includes at least (4
3)
λ+1 εn left vertices. Since both the mates of these

left vertices and the free vertices are at augmentation distance at most λ+ 1, there are at
least (1+ (4

3)
λ+1)εn right vertices at augmentation distance no greater than λ+ 1, i.e.,

|Yλ+1| ≥ (1+ (4
3)
λ+1)εn.

This argument works as long as λ ≤ log4/3(1/2ε), because the expansion argument
works until the size of Yλ becomes larger than (1

2 + ε)n for the first time.

The Shrinking Property. By the expansion property, nearly half of the right vertices
are at augmentation distance no greater than λ∗ =
log4/3(1/2ε)�. Next, we show is that
every set of left vertices X , |X | ≤ n/4, has at least 2|X | neighbors in R whp (Lemma 7).
This implies that the number of right vertices at augmentation distance greater than λ∗+λ
is at most 2−(λ+1) n (Lemma 8).

Lemma 6. Let d ≥ 8 be an integer. Then the probability that every set of right vertices
Y with |Y | ≥ (1

2+ε)n has at least n−((1+ε)n−|Y |)/2 neighbors is at least 1−O(n4−d).

Proof. We first show the following lemma whose proof is similar to the proof of
Lemma 1.

Lemma 7. Let γ be a positive constant, and let d ≥ (1+ log e)(2+γ)+ log(1+γ) be
an integer. Then the probability that every set of left vertices X with |X | ≤ n/2(1+ γ)
has at least (1+ γ)|X | neighbors is at least 1− O(n3+γ−d).

Proof. For a fixed integer k, 1 ≤ k ≤ n/2(1+γ), let P(k) be the probability that there
exists a set of left vertices of size k which does not expand by (1+ γ). Then

P(k) ≤
(

n

k

)(
(1+ ε)n
(1+ γ)k

)(
(1+ γ)k
(1+ ε)n

)dk

.

Working similarly to the proof of Lemma 1, we bound P(k) by O(n2+γ−d) for small
values of k, e.g., 1 ≤ k ≤ n/c, where c is a sufficiently large positive constant. For
k > n/c, let µ = k/n ∈ (0, 1/2(1+ γ)]. Using Proposition 1, we obtain the following
lower bound on d:

d > 1+ γ +
µ ln

(
1
µ

)
+ (1− µ) ln

(
1

1−µ
)

µ ln
(

1+ε
(1+γ)µ

)

+
(1+ ε − (1+ γ)µ) ln

(
1+ε

1+ε−(1+γ)µ
)

µ ln
(

1+ε
(1+γ)µ

) . (3)

We observe that the right-hand side of inequality (3) is maximized for µ = 1/2(1+ γ)
and cannot exceed (1+ log e)(2+ γ)+ log(1+ γ).

Space Efficient Hash Tables 241

We observe that for γ = 1, inequality (3) is satisfied whenever d ≥ 8. To conclude
the proof of Lemma 6, we show that any graph B satisfying the conclusion of Lemma 7
also satisfies the conclusion of Lemma 6. To reach a contradiction, we assume that for
some integer k, 0 ≤ k ≤ n/4, there is a set of right vertices Y of size (1 + ε)n − 2k
with less than n − k neighbors. Let X be the set of left vertices not included in the
neighborhood of Y . The size of X must be greater than k. By Lemma 7, X has more
than 2k neighbors in R, which implies that some vertices of Y have neighbors in X , a
contradiction.

We observe that for every ε ∈ (0, 1
5), 5 + 3 ln(1/ε) ≥ 8 and the hypothesis of

Lemma 6 is satisfied by any choice of d satisfying the hypothesis of Theorem 1.

Lemma 8. Let B(L , R, E) be a bipartite graph satisfying the conclusions of Lemmas 3
and 6 and let λ∗ =
log4/3(1/2ε)�. Then, for every integer λ ≥ 0, the number of right
vertices at augmentation distance greater than λ+ λ∗ is at most 2−(λ+1) n.

Proof. We prove the lemma by induction on λ. By Lemma 5, we know that |Yλ∗ | ≥
(1

2 + ε)n. Therefore, for λ = 0, the number of right vertices at augmentation distance
greater than λ∗ is at most n/2.

For some integer λ ≥ 0, let the number of right vertices at augmentation distance
greater than λ + λ∗ be at most 2−(λ+1) n. Consequently, there are at least (1 + ε −
2−(λ+1))n right vertices at augmentation distance no greater than λ+ λ∗, i.e., |Yλ+λ∗ | ≥
(1 + ε − 2−(λ+1))n. By Lemma 8, the neighborhood of Yλ+λ∗ includes at least (1 −
2−(λ+2))n left vertices. Both the mates of these left vertices and the free vertices are at
augmentation distance at most (λ+ 1)+ λ∗. Hence, |Y(λ+1)+λ∗ | ≥ (1+ ε − 2−(λ+2))n,
and no more than 2−(λ+2) n right vertices are at augmentation distance greater than
(λ+ 1)+ λ∗.

Bounding the Size of the BFS Tree. Let v be a newly arrived left vertex, and let Tv be
the random variable denoting the number of right vertices encountered before a shortest
augmenting path starting at v is found (i.e., before the BFS reaches the first free vertex).
Clearly, the insertion algorithm can add v to the current matching in O(Tv) time and
space. Then we use the assumption that the current matching and the sets Yλ do not
depend on the random choices of v, and we show that (i) Tv does not exceed o(n) whp
and (ii) the expectation of Tv does not exceed 2 dλ

∗+2.
We first assume that the bipartite graph B satisfies the conclusions of Lemmas 3

and 6 and contains an L-perfect matching which covers v. In addition, we assume that
no rehash is carried out if there are too many right vertices in the BFS tree.

If at least one of the d neighbors of v is at augmentation distance at most λ, an
augmenting path is found after at most dλ+1 right vertices have been visited. Therefore,
for every integerλ ≥ 0, the probability that Tv exceeds dλ+1 is at most (1−|Yλ|/(1+ε)n)d .

By Lemma 8, there are at most 2−(λ+1) n right vertices at augmentation distance
greater than λ+ λ∗. Hence, 1− |Yλ∗+λ|/(1+ ε)n ≤ 2−(λ+1). Let β be a constant in the
interval (0, 1

2). Then

Pr[Tv > dλ
∗+1 n1−β] < 2−(1−β)d logd n = n−(1−β)d/log d .

242 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

Usingβ = 9
10 and d ≥ 8, we conclude that the probability that more than dλ

∗+1 n9/10 right
vertices are encountered before an augmenting path is found does not exceed n−24/10.

As for the expectation of Tv ,

E[Tv] =
∞∑

t=1

Pr[Tv ≥ t]

≤ d +
∞∑
λ=0

dλ+2
Pr[v has no neighbor in Yλ]

≤ d +
∞∑
λ=0

dλ+2

(
1− |Yλ|

(1+ ε)n
)d

≤ dλ
∗+2 + dλ

∗+2

2d

∞∑
λ=0

(
d

2d

)λ
,

where the last inequality follows from Lemma 8. For any d ≥ 8, d/2d ≤ 1
32 and the

above sum can be bounded by 249
248 dλ

∗+2.
We also have to consider the contribution of several low probability events to the ex-

pectation of Tv . The probability that more than dλ
∗+1 n9/10 right vertices are encountered

before an augmenting path is found is O(n−24/10). In addition, for d ≥ 8, the bipartite
graph B violates the conclusions of Lemmas 3 or 6 with probability O(n−4), and B does
not contain an L-perfect matching with probability O(n−12). Each of these events causes
a rehash, whose cost is bounded by O(n2). Therefore, these low probability events have
a negligible contribution to the expectation of Tv , which can be bounded by 2 dλ

∗+2.
We can choose d = �(ln(1/ε)). Using λ∗ = �(ln(1/ε)), we conclude that the

expectation of Tv is (1/ε)O(ln d).

4. Experiments

Our theoretical analysis is not tight with respect to the constant factors and lower order
terms in the relation between the worst case number of probes d and the waste of space
εn. The analysis is even less accurate with respect to the insertion time. Since these
quantities are important to judge how practical d-ary Cuckoo Hashing might be, we
designed an experiment that can partially fill this gap. We decided to focus on a variant
that looks promising in practice: We use d separate tables of size (1 + ε)n/d because
then it is not necessary to re-evaluate the hash function that led to the old position of
an element to be moved. Insertion uses a random walk, i.e., an element is randomly
placed in of the d table positions available to it. If this position was previously occupied
by another element, the displaced element randomly picks one of its d − 1 remaining
choices, etc., until a free table entry is found. The random walk insertion saves us some
bookkeeping that would be needed for insertion by BFS. The source of the simulation
program is avaiable at http://www.mpi-sb.mpg.de/ sanders/programs/cuckoo. Figure 2
shows the average number of probes needed for insertion as a function of the space
utilization 1/(1+ ε) for d ∈ {2, 3, 4, 5}. Since 1/ε is a lower bound, the y-axis is scaled
by ε. We see that all schemes are close to the insertion time 1/ε for small utilization

Space Efficient Hash Tables 243

0

1

2

3

4

5

0 0.5 1

ε
*

#p
ro

be
s

space utilization

d=2
d=3
d=4
d=5

Fig. 2. Scaled average number of memory probes for insertion into a d-ary Cuckoo Hash table with 100 000
entries as a function of the memory utilization n/105 (ε = 1 − n/105). Starting from n = 1000 · k (k ∈
{1, . . . , 100}), a random element is removed and a new random element is inserted. This is repeated 1000
times for each of 100 independent runs. Hash functions are full lookup tables filled with random elements
generated using [18]. The curves stop when any insertion fails after 1000 probes.

and grow quickly as they approach a capacity threshold that depends on d. Increasing
d strictly decreases average insertion time so that we get clear trade-off between worst
case number of probes for accesses and average insertion time.

The maximum space utilization approaches one quickly as d is incremented. The
observed thresholds were at 49 % for d = 2, 91 % at d = 3, 97 % at d = 4, and 99 % at
d = 5.

5. Filter Hashing

In this section we describe and analyze Filter Hashing, a simple hashing scheme with
worst case constant lookup time, that can be used in combination with essentially any
other hashing scheme to improve the space efficiency of the latter. More precisely, Filter
Hashing space efficiently stores almost all elements of a set. The remaining elements
can then be stored using a less space efficient hashing scheme, e.g., [7].

To explain Filter Hashing, we again switch to the terminology of bipartite graphs.
For a parameter γ , 0 < γ < 1, we split the right vertices into d = �(ln2(1/γ)) parts,
called layers, of total size at most n. Each left vertex is associated with exactly one
neighbor in each of the d layers, using hash functions as described below. A newly
arrived vertex is always matched to an unmatched neighbor in the layer with the smallest
possible number. The name filter hashing comes from the analogy of a particle (hash table
element/left vertex) passing through a cascade of d filters (layers). If all the neighbors
in the d layers have been matched, the vertex is not stored, i.e., it is left to the hashing
scheme handling such “overflowing” vertices. We will show that this happens to at most
γ n elements whp.

If the hashing scheme used for the overflowing vertices uses linear space, a total
space usage of (1+ ε) n cells can be achieved for γ = �(ε). For example, if we use the
dictionary of [7] to handle overflowing vertices, the space used for overflowing vertices is
O(γ n), and every insertion and lookup of an overflowing vertex takes constant time whp.

244 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

Even though this scheme exhibits relatively high constant factors in time and space, the
effect on space and average time of the combined hashing scheme is small if we choose
the constant γ to be small.

A hashing scheme similar to filter hashing, using O(log log n) layers, was proposed
in [2], but only analyzed for load factor less than 1

2 . Here, we use stronger tools and hash
functions to get an analysis for space utilization arbitrarily close to 1.

What happens in the filtering scheme can be seen as letting the left vertices decide
their mates using a multi-level balls and bins scenario, until the number of unmatched
left vertices becomes small enough. The scheme gives a trade-off between the number
of layers and the fraction γ of overflowing vertices.

We proceed to describe precisely the bipartite graph B(L , R, E) used for the
scheme, where |L| = |R| = n. We partition R into d layers Ri , i = 1, . . . , d,
where d =
ln2(4/γ)� and |Ri | = �(n/ln(4/γ))/ (1− (1/ln(4/γ)))i−1�. Suppose
that L ⊆ {1, . . . ,m} for some integer m, or, equivalently, that we have some way of
mapping each vertex to a unique integer in {1, . . . ,m}. The edges connecting a vertex
v ∈ L to Ri , for i = 1, . . . , d, are given by function values on v of the hash functions

hi (x) =
(

t∑
j=0

ai j x
j mod p

)
mod|Ri |, (4)

where t = 12
ln(4/γ)+ 1�, p > mn is a prime number and the ai j are randomly and
independently chosen from {0, . . . , p − 1}.

For n larger than a suitable constant (depending on d), the total size
∑d

i=1 |Ri | of
the d layers is in the range[

d∑
i=1

n

ln(4/γ)

(
1− 1

ln(4/γ)

)i−1

− d ;
∞∑

i=1

n

ln(4/γ)

(
1− 1

ln(4/γ)

)i−1
]

=
[

n

(
1−

(
1− 1

ln(4/γ)

)d
)
− d ; n

]
⊆
[(

1− γ
2

)
n ; n

]
.

From the description of filter hashing, it is straightforward that the worst case number
of probes for inserting or accessing an element is d = O(ln2(1/ε)). Furthermore, if the
evaluation of the hash functions is taken into account, the worst case insertion time and
the worst case access time are d t = O(ln3(1/ε)). In the following we prove that at
most γ n left vertices overflow whp, and that the average time for a successful search is
O(ln(1/γ)). Both these results are implied by the following lemma.

Lemma 9. For any constant γ , 0 < γ < 1, for d = ⌈ln2(4/γ)
⌉

and n larger than
a suitable constant, the number of left vertices matched to vertices in Ri is at least
(1− γ /2)|Ri | for i = 1, . . . , d with probability 1− O((1/γ)O(log log(1/γ))(1/n)).

Proof. We use tools from [8] to prove that each of the layers has at least a fraction (1−
γ /2)of its vertices matched to left vertices with probability 1−O((1/γ)O(log log(1/γ))(1/n)).
As there are O(ln2(1/γ)) layers, the probability that this happens for all layers is also
1− O((1/γ)O(log log(1/γ))(1/n)).

Space Efficient Hash Tables 245

The number of left vertices that are not matched to a vertex in layers R1, . . . , Ri−1

is at least ni = n −∑i−1
j=1 |Rj |. We have the inequalities

(
1− 1

ln(4/γ)

)i−1

n ≤ ni ≤
(

1− 1

ln(4/γ)

)i−1

n + i.

Consider the random variable free(Ri+1) denoting the number of empty bins in the balls
and bins scenario with ni+1 balls and |Ri+1| bins, where the positions of the balls are
given by a hash function of the form (4). This is a pessimistic estimate of the number
of free vertices in layer i + 1 of the hashing scheme, since ni+1 is a lower bound on the
number vertices that are not matched to R1, . . . , Ri . We use tools for analyzing such a
scenario from [8] to show that free(Ri+1) ≤ (γ /2)|Ri+1| with probability 1− O(1/n).
Denote by bj the number of balls in bin number j and let Ck =

∑|Ri+1|
j=1

(bj

k

)
be the

number of “colliding k-sets of balls.” Since t/2 is even, we have the following inequality
[8, Proposition 6]:

free(Ri+1) ≤
t/2∑
k=0

(−1)kCk . (5)

The “load factor” of the balls and bins scenario is α = ni+1/|Ri+1| ≥ ln(4/γ). Since
p > mn we get from [8] that for k ≤ t/2,

(1− O(1/ni+1)) ni+1α
k−1

k!
≤ E[Ck] ≤ (1− O(1/ni+1)) ni+1α

k−1

k!
.

Thus we get the following upper bound:

E[free(Ri+1)]

≤
(

1+ O

(
1

ni+1

))
ni+1

t/2∑
k=0

(−1)kαk−1

k!
≤

3
2 ni+1e−α

α
≤ 3γ

8
|Ri+1|, (6)

where the second inequality uses t ≥ 10α and that n (and thus ni+1) is sufficiently large.
It is shown in [8] that Var(Ck) = O(α2kn) for k ≤ t/2. Thus we can use Chebychev’s

inequality to bound the probability that free(Ri+1) exceeds (γ /2)|Ri+1|:

Pr[free(Ri+1) >
γ

2
|Ri+1|] ≤

t/2∑
k=0

Pr

[|Ck − E[Ck]| > (γ/8)|Ri+1|
t/2+ 1

]

≤
t/2∑
k=0

Var(Ck)

(γ /8|Ri+1|/(t/2+ 1))2

= O

((
1

γ

)O(log log(1/γ)) 1

n

)
.

Lemma 9 implies that there are at most (γ /2)n of the n right side vertices that are
not part of R1, . . . , Rd , and with probability 1−O(1/n) there are at most (γ /2)n vertices

246 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

in the layers that are not matched. Thus, with probability 1− O(1/n) no more than γ n
vertices overflow.

The expected average time for a successful search can be bounded as follows. The
number of elements with search time i ≤ d is at most |Ri |, and the probability that a
random left vertex overflows is at most γ +O(1/n), i.e., the expected total search time
for all elements is bounded by

(
γ+O

(
1

n

))
nd+

d∑
i=1

|Ri |i

≤
(
γ+O

(
1

n

))⌈
ln2

(
4

γ

)⌉
n + n

ln(4/γ)

∞∑
i=0

(
1− 1

ln(4/γ)

)i

i

= O

(
n ln

(
4

γ

))
.

The expected time to perform a rehash in case too many elements overflow is
O(ln(1/γ)n). Since the probability that this happens for any particular insertion is
O((1/γ)O(log log(1/γ))(1/n)), the expected cost of rehashing for each insertion is
(1/γ)O(log log(1/γ)). Rehashes caused by the total number of elements (including those
marked deleted) exceeding n have a cost of O(ln(1/γ)/γ) per insertion and deletion,
which is negligible.

6. Conclusions and Open Problems

From a practical point of view, d-ary Cuckoo Hashing seems a very advantageous ap-
proach to space efficient hash tables with worst case constant access time. Both worst
case access time and average insertion time are very good. It also seems that one could
make average access time quite small. A wide spectrum of algorithms could be tried
out from maintaining an optimal placement of elements (via minimum weight bipartite
matching) to simple and fast heuristics.

Theoretically, there are two main open questions. The first concerns tight (high
probability) bounds for the insertion time. The second question is whether the analysis
of d-ary Cuckoo Hashing also works for practical, constant time evaluable hash functions.
Dietzfelbinger has suggested [6] the following interesting solution: A very simple hash
function based on polynomials of constant degree is used to partition the elements
into log n disjoint groups of size at most (1 + ε/2)n/log n [15]. Now space linear in
the size of one group (O(dn/log n)) is invested to obtain an emulation of d uniform
hash functions within one group. This can be achieved using recent constructions by
Östlin and Pagh [21], or Dietzfelbinger and Wölfel [10]. Each group is stored in a table
with (1 + ε)n/log n entries. The main trick is that the same d hash functions can be
used for all the groups so that the total space needed for the hash functions remains
sublinear.

Filter Hashing is inferior in practice to d-ary Cuckoo Hashing but it might have
specialized applications. For example, it could be used as a lossy hash table with
worst case constant insertion time. This might make sense in real time applications

Space Efficient Hash Tables 247

where delays are not acceptable whereas losing some entries might be tolerable, e.g.,
for gathering statistic information on the system. In this context, it would be theo-
retically and practically interesting to give performance guarantees for simpler hash
functions.

References

[1] R. P. Brent. Reducing the retrieval time of scatter storage techniques. Communications of the ACM,
16(2):105–109, 1973.

[2] A. Z. Broder and A. R. Karlin. Multilevel adaptive hashing. In Proceedings of the 1st Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA ’90), pages 43–53. ACM Press, New York, 2000.

[3] A. Brodnik and J. I. Munro. Membership in constant time and almost-minimum space. SIAM Journal
on Computing, 28(5):1627–1640, 1999.

[4] J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE Transactions on Computers,
C-33(9):828–834, September 1984.

[5] R. Diestel. Graph Theory, 2nd edition. Springer-Verlag, New York, 2002.
[6] M. Dietzfelbinger. Personal communication, 2003.
[7] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable (extended

abstract). In Proceedings of the 19th International Colloquium on Automata, Languages and Program-
ming (ICALP ’92), pages 235–246. Volume 623 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1992.

[8] M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space. In Proceedings of the
9th European Symposium on Algorithms (ESA ’01), pages 109–120. Volume 2161 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, 2001.

[9] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: upper and lower bounds. SIAM Journal on Computing, 23(4):738–761,
1994.

[10] M. Dietzfelbinger and P. Wölfel. Almost random graphs with simple hash functions. In Proceedings
of the 35th Annual ACM Symposium on Theory of Computing (STOC ’03), 2003.

[11] D. P. Dubhashi and D. Ranjan. Balls and Bins: a study in negative dependence. Random Structures &
Algorithms, 13:99–124, 1998.

[12] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time.
Journal of the ACM, 31(3):538–544, 1984.

[13] G. H. Gonnet and J. I. Munro. Efficient ordering of hash tables. SIAM Journal on Computing, 8(3):463–
478, 1979.

[14] J. E. Hopcroft and R. M. Karp. An O(n5/2) algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2:225–231, 1973.

[15] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms. Theoretical
Computer Science, 71(1):95–132, 1990.

[16] J. A. T. Maddison. Fast lookup in hash tables with direct rehashing. The Computer Journal, 23(2):188–
189, May 1980.

[17] E. G. Mallach. Scatter storage techniques: a uniform viewpoint and a method for reducing retrieval
times. The Computer Journal, 20(2):137–140, May 1977.

[18] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform
pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 8:3–30,
1998. http://www.math.keio.ac.jp/ matumoto/emt.html.

[19] R. Motwani. Average-case analysis of algorithms for matchings and related problems. Journal of the
ACM, 41(6):1329–1356, November 1994.

[20] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, 1995.
[21] A. Östlin and R. Pagh. Uniform hashing in constant time and linear space. In Proceedings of the 35th

Annual ACM Symposium on Theory of Computing (STOC ’03), 2003.
[22] R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM Journal on Computing,

31(2):353–363, 2001.

248 D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis

[23] R. Pagh and F. F. Rodler. Cuckoo hashing. In Proceedings of the 9th European Symposium on Algorithms
(ESA ’01), pages 121–133. Volume 2161 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
2001.

[24] R. Raman and S. Srinivasa Rao. Succinct dynamic dictionaries and trees. In Proceedings of the 30th
International Colloquium on Automata Languages and Programming, pages 345–356. Volume 2719 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2003.

[25] R. L. Rivest. Optimal arrangement of keys in a hash table. Journal of the ACM, 25(2):200–209, 1978.
[26] P. Sanders. Asynchronous scheduling of redundant disk arrays. In Proceedings of the 12th ACM

Symposium on Parallel Algorithms and Architectures, pages 89–98, 2000.
[27] P. Sanders. Reconciling simplicity and realism in parallel disk models. In Proceedings of the 12th

ACM–SIAM Symposium on Discrete Algorithms, pages 67–76, Washington, DC, 2001.
[28] P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In Proceedings of the 11th

ACM–SIAM Symposium on Discrete Algorithms, pages 849–858, 2000.
[29] A. C.-C. Yao. Uniform hashing is optimal. Journal of the ACM, 32(3):687–693, 1985.

Received May 15, 2003, and in revised form November 24, 2003, and in final form March 23, 2004.
Online publication December 13, 2004.

