
15-359: Probability and Computing
Fall 2009

Lecture 10: More Chernoff Bounds, Sampling, and the Chernoff + Union Bound method

1 Chernoff Bound 2

Last lecture we saw the following:

Chernoff Bound 1: Let X ∼ Binomial(n, 1/2). Then for any 0 ≤ t ≤
√
n,

Pr
[
X ≥ n

2
+ t

√
n

2

]
≤ e−t

2/2,

and also Pr
[
X ≤ n

2
− t
√
n

2

]
≤ e−t

2/2.

This bound tells us that if X is the sum of many independent Bernoulli(1/2)’s, it’s extremely
unlikely that X will deviate even a little bit from its mean. Let’s rephrase the above a little. Taking
t = ε

√
n in Chernoff Bound 1, we get

Pr[X ≥ (1 + ε)(n/2)]
Pr[X ≤ (1− ε)(n/2)]

}
≤ e−ε2n/2.

Okay, that tells us about deviations for Binomial(n, 1/2). Turns out that similar bounds are
true for Binomial(n, p). And similar bounds are true for, say,

U = U1 + · · ·+ Un

when the Ui’s are independent random variables that are

Ui =


0 w.p. 1/3,
1/2 w.p. 1/3,
1 w.p. 1/3.

Actually, there are a dozens of versions of Chernoff bounds, covering dozens of variations; in other
texts, you might see any of them. But as promised, you will only be required to memorize one
more :) This one covers 95% of cases pretty well.

Chernoff Bound 2:
Let X1, . . . , Xn be independent random variables.
They need not have the same distribution.
Assume that 0 ≤ Xi ≤ 1 always, for each i.
Let X = X1 + · · ·+Xn.
Write µ = E[X] = E[X1] + · · ·+ E[Xn].
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Then for any ε ≥ 0,

Pr[X ≥ (1 + ε)µ] ≤ exp
(
− ε2

2 + ε
µ

)
and, Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
.

(Remember the notation exp(x) = ex.)

1.1 What’s up with the ε2

2+ε
?

Chernoff Bound 2 takes some memorizing, we admit it. But it’s a truly indispensable tool, so it’s
very much worth it. Actually, the second statement, the probability of going below the expectation,
isn’t so bad to remember; it’s clean-looking at least. The first statement is, admittedly, slightly
weird. By symmetry you were probably hoping that we were going to write

exp
(
−ε

2

2
µ

)
on the right side of the first statement, like in the second statement. Unfortunately we can’t; turns
out, that’s simply not true. Notice that

ε2

2
is slightly bigger than

ε2

2 + ε
,

and therefore

−ε
2

2
µ is slightly more negative than − ε2

2 + ε
µ

(since µ ≥ 0 since all the Xi’s are nonnegative), and therefore

exp
(
−ε

2

2
µ

)
is slightly smaller than exp

(
− ε2

2 + ε
µ

)
.

So the bound for Pr[X ≥ (1 + ε)µ] is slightly bigger than the bound for Pr[X ≤ (1 − ε)µ], but
unfortunately, it cannot be improved to the smaller quantity.

Now, ε is a user-selected parameter, and most of the time you, the user, select ε to be pretty
small, smaller than 1. If indeed ε ≤ 1, we have

ε2

2 + ε
is bigger than

ε2

3
,

and so we could put this slightly simpler quantity into our bound. Indeed, sometimes people state
a simplified Chernoff Bound 2 like this:

Chernoff Bound 2′: Suppose we are in the setting of Chernoff Bound 2. Then for all 0 ≤ ε ≤ 1,

Pr[X ≥ (1 + ε)µ] ≤ exp
(
−ε

2

3
µ

)
and, Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
.
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That’s a little easier to remember. And indeed, for the event X ≤ (1 − ε)µ you would never
care to take ε > 1 anyway! But for the event X ≥ (1 + ε)µ sometimes you would care to take ε > 1.
And Chernoff Bound 2′ doesn’t really tell you what to do in this case. Whereas Chernoff Bound 2
does; for example, taking ε = 8, it tells you

Pr[X ≥ 9µ] ≤ exp(−6.4µ).

1.2 More tricks and observations

Sometimes you simply want to upper-bound the probability that X is far from its expectation.
For this, one thing we can do is take Chernoff Bound 2, intentionally weaken the second bound to
exp(− ε2

2+εµ) as well, and then add, concluding:

Two-sided Chernoff Bound: In the setting of Chernoff Bound 2,

Pr[|X − µ| ≥ εµ] ≤ 2 exp
(
− ε2

2 + ε
µ

)
.

What if we don’t have 0 ≤ Xi ≤ 1? Another twist is that sometimes you don’t have that your
r.v.’s Xi satisfy 0 ≤ Xi ≤ 1. Sometimes they might satisfy, say, 0 ≤ Xi ≤ 10. Don’t panic! In this
case, the trick is to define Yi = Xi/10, and Y = Y1 + · · · + Yn. Then we do have that 0 ≤ Yi ≤ 1
always, the Yi’s are independent assuming the Xi’s are, µY = E[Y ] = E[X]/10 = µX/10, and we
can use the Chernoff Bound on the Yi’s;

Pr[X ≥ (1 + ε)µX ] = Pr[X/10 ≥ (1 + ε)µX/10] = Pr[Y ≥ (1 + ε)µY ]

≤ exp
(
− ε2

2 + ε
µY

)
= exp

(
− ε2

2 + ε

µX
10

)
.

So you lose a factor of 10 inside the final exponential probability bound, but you still get something
pretty good. This is a key trick to remember!

Finally, one more point: Given that we have this super-general Chernoff Bound 2, why bother
remembering Chernoff Bound 1? The reason is, Chernoff 2 is weaker than Chernoff 1. If X ∼
Binomial(n, 1/2), Chernoff Bound 1 tells us

Pr[X ≤ n/2− t
√
n/2] ≤ exp(−t2/2). (1)

However, suppose we used Chernoff Bound 2. We have

“X ≤ n/2− t
√
n/2” ⇔ X ≤ (1− t/

√
n)(n/2),

and so Chernoff Bound 2 gives us

Pr[X ≤ n/2− t
√
n/2] ≤ exp

(
−(t/

√
n)2

2
· n

2

)
= exp(−t2/4).

This is only the square-root of the bound (1).
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1.3 The proof

We will not prove Chernoff Bound 2. However the proof is not much more than an elaboration on
our proof of Chernoff Bound 1. Again, the idea is to let λ > 0 be a small “scale”, pretty close to ε,
actually. You then consider the random variable (1 + λ)X , or relatedly, eλX . Finally, you bound,
e.g.,

Pr[X ≥ (1 + ε)µ] = Pr[eλX ≥ e(1+ε)µ] ≤ E[eλX ]
e(1+ε)µ

,

using Markov’s Inequality, and you can compute E[eλX ] as

E[eλX ] = E[eλX1+···+λXn ] = E[eλX1 · · · eλXn ] = E[eλX1 ] · · ·E[eλXn ],

using the fact that X1, . . . , Xn are independent.

2 Sampling

The #1 use of the Chernoff Bound is probably in Sampling/Polling. Suppose you want to know
what fraction of the population approves of the current president. What do you do?

Well, you do a poll. Roughly speaking, you call up n random people and ask them if they
approve of the president. Then you take this empirical fraction of people and claim that’s a good
estimate of the true fraction of the entire population that approves of the president. But is it a
good estimate? And how big should n be?

Actually, there are two sources of error in this process. There’s the probability that you obtain
a “good” estimate. And there’s the extent to which your estimate is “good”. Take a close look at
all those poll results that come out these days and you’ll find that they use phrases like,

“This poll is accurate to within ±2%, 19 times out of 20.”

What this means is that they did a poll, they published an estimate of the true fraction of people
supporting the president, and they make the following claim about their estimate: There is a 1/20
chance that their estimate is just completely way off. Otherwise, i.e., with probability 19/20 = 95%,
their estimate is within ±2% of the truth.

This whole 95% thing is called the “confidence” of the estimate, and its presence is inevitable.
There’s just no way you can legitimately say, “My polling estimate is 100% guaranteed to be within
±2% of the truth.” Because if you sample n people at random, you know, there’s a chance they all
happen to live in Massachusetts, say (albeit an unlikely, much-less-than-5% chance), in which case
your approval rating estimate for a Democratic president is going to much higher than the overall
country-wide truth.

To borrow a phrase from Learning Theory, these polling numbers are “Probably Approximately
Correct” — i.e., probably (with chance at least 95% over the choice of people), the empirical average
is approximately (within ±2%, say) correct (vis-a-vis the true fraction of the population).

2.1 Analysis

How do pollsters, and how can we, make such statements?
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Let the true fraction of the population that approves of the president be p, a number in the
range 0 ≤ p ≤ 1. This is the “correct answer” that we are trying to elicit.

Suppose we ask n uniformly randomly chosen people for their opinion, and let each person be
chosen independently. We are choosing people “with replacement”. (I.e., it’s possible, albeit a very
slim chance, that we may ask the same person more than once.) Let Xi be the indicator random
variable that the ith person we ask approves of the president. Here is the key observation:

Fact: Xi ∼ Bernoulli(p), and X1, . . . , Xn are independent.

Let X = X1 + · · · + Xn, and let X = X/n. The empirical fraction X is the estimate we will
publish, our guess at p.

Question: How large does n have to be so that we get good “accuracy” with high “confidence”?
More precisely, suppose our pollster boss wants our estimate to have accuracy θ and confidence
1− δ, meaning

Pr
[
|X − p| ≤ θ

]
≥ 1− δ.

How large do we have to make n?

Answer: Let’s start by using the Two-sided Chernoff Bound on X. Since X ∼ Binomial(n, p),
we have E[X] = np. So for any ε ≥ 0, we have

Pr[|X − pn| ≥ εpn] ≤ 2 exp
(
− ε2

2 + ε
· pn

)
⇔ Pr[|X − p| ≥ εp] ≤ 2 exp

(
− ε2

2 + ε
· pn

)
.

Here the two events inside the Pr[·] are the same event; we just divided by n.

We want accuracy θ; i.e., we want X to be within θ of p with high probability. (In our original
example, θ = 2% = .02.) We need to get θ = εp, so we should take ε = θ/p.1 Doing so, we get

Pr[|X − p| ≥ θ] ≤ 2 exp
(
− θ2/p2

2 + θ/p
· pn

)
= 2 exp

(
− θ2

2p+ θ
· n
)
.

Okay, what about getting confidence 1− δ? Let’s look at that bound on the right. Having that
n inside the exp(−·) is great — it tells us the bigger n is, the less chance that our estimate is off by
more than θ. As for the θ2

2p+θ , well, the bigger that term is, the better. The bigger p is, the smaller
that factor is, but the biggest p could be is 1. I.e.,

θ2

2p+ θ
≥ θ2

2 + θ
,

and therefore we have

Pr[|X − p| ≥ θ] ≤ 2 exp
(
− θ2

2 + θ
· n
)
.

1Worried about p = 0? In that case, X will correctly be 0 100% of the time!
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So if we want confidence 1− δ in the estimate (think, e.g., δ = 1/20), we would like the right-hand
side in the above to be at most δ.

δ ≥ 2 exp
(
− θ2

2 + θ
· n
)

⇔ exp
(

θ2

2 + θ
n

)
≥ 2

δ

⇔ θ2

2 + θ
n ≥ ln

2
δ

⇔ n ≥ 2 + θ

θ2
ln

2
δ
.

We have thus proved the following very important theorem. (NB: As is traditional, we’ve called
the accuracy “ε” in the below, rather than “θ”.)

Sampling Theorem: Suppose we use independent, uniformly random samples to estimate p,
the fraction of a population with some property. If the number of samples n we use satisfies

n ≥ 2 + ε

ε2
ln

2
δ
,

then we can assert that our estimate X satisfies

X ∈ [p− ε, p+ ε] with probability at least 1− δ.

Some comments:

� That range [p− ε, p+ ε] is sometimes called the confidence interval.

� Due to the slightly complicated statement of the bound, sometimes people will just write the
slightly worse bounds

n ≥ 3
ε2

ln
2
δ
,

or even

n ≥ O
(

1
ε2

ln
2
δ

)
.

� One beauty of the Sampling Theorem is that the number of samples n you need does not
depend on the size of the total population. In other words, it doesn’t matter how big the
country is, the number of samples you need to get a certain accuracy and a certain confidence
only depends on that accuracy and confidence.

� In the example we talked about earlier we were interested in accuracy ε = 2% and confidence
95%, meaning δ = 1/20. So the Sampling Theorem tells us we need at least

n ≥ 2 + .02
(.02)2

ln
2

1/20
= 5050 ln 40 ≈ 18600.

Not so bad: you only need to call 18600 or so folks! Er, well, actually, you need to get 18600
folks to respond. And you need to make sure that the events “person responds” and “person
approves of the president” are independent. (Hmm. . . maybe being a pollster is not as easy
as it sounds. . . )

� As you can see from the form of the bound in the Sampling Theorem, the really costly thing
is getting high accuracy: 1/ε2 is a fairly high price to have to pay in the number of samples.
On the other hand, getting really high confidence is really cheap: because of the ln, it hardly
costs anything to get δ really tiny.
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3 The Chernoff + Union Bound method

Just as Linearity of Expectation and Indicator random variables often come together in glorious
marriage, so too do the Chernoff Bound and the Union Bound. You remember the humble Union
Bound, right?

Union Bound: Pr[B1 ∪B2 ∪ · · · ∪Bn] ≤
∑n

i=1 Pr[Bi].

The idea behind the Chernoff + Union Bound method is the following: The Chernoff Bound is
extraordinarily strong, usually showing that the probability a certain “bad event” happens is ex-
tremely tiny. Thus, even if very many different bad events exist, if you bound each one’s probability
by something extremely tiny, you can afford to just add up the probabilities. I.e.,

Pr[anything bad at all] = Pr[Bad1 ∪ · · · ∪ BadLarge] ≤
Large∑
i=1

Pr[Badi]

(this is a high-level picture :) and if the Chernoff Bound implies Pr[Badi] ≤ minuscule for each i,
we get

Pr[anything bad at all] ≤
Large∑
i=1

minuscule = (Large)× (minuscule) = small.

(Told you it was high-level.)

Let’s do an example to make this concrete.

3.1 Random load balancing

Suppose you are a content delivery network — say, YouTube. Suppose that in a typical five-minute
time period, you get a million content requests, and each needs to be served from one of your, say,
1000 servers. How should you distribute the requests (let’s call them ‘jobs’) across your servers
to balance the load? You might consider a round-robin policy, or a policy wherein you send each
job to the server with the lowest load. But each of these requires maintaining some state and/or
statistics, which might cause slight delays. You might instead consider the following extremely
simple and lightweight policy, which is surprisingly effective: assign each job to a random server.

Let’s abstract things slightly. Suppose we have k servers and n jobs. Assume all n jobs arrive
very quickly, we assign each to a random server (independently), and the jobs take a while to
process. What we are interested in the load of the servers.

ASSUMPTION: n is much bigger than k.

E.g., our YouTube example had n = 106, k = 103.

Question: The average “load” — jobs per server — will of course be n/k. But how close to
perfectly balanced will things be? In particular, is it true that the maximum load is not much
bigger than n/k, with high probability?
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Answer: Yes! Let’s do the analysis.

Let Xi denote the number of jobs assigned to server i, for 1 ≤ i ≤ k.

Question: What is the distribution of the random variable Xi?

Answer: If you think a little bit carefully, you see that Xi is a binomial random variable:
Xi ∼ Binomial(n, 1/k). To see it, just imagine staring at the ith server. For each of n trials/jobs,
there is a 1/k chance that that job gets thrown onto this ith server.

Don’t be confused by notation, by the way — we used to use subscripted X’s like Xi to denote
Bernoulli random variables, and their sums were Binomial random variables denoted X. Here we
have that each Xi itself is a Binomial random variable.

Question: Are X1, . . . , Xk independent random variables?

Answer: No! Here is one non-rigorous but intuitive reason: we know that it will always be the
case that

k∑
i=1

Xi = n.

So in particular, if I tell you the value of X1, . . . , Xk−1, you know exactly what Xk is. Bear in mind
that this reasoning does not formally prove that X1, . . . , Xk are not independent. But it’s not hard
to do that either. Here’s one way: if X1, . . . , Xk were independent, we’d have

Pr[X1 = n ∩X2 = n ∩ · · · ∩Xk = n] = Pr[X1 = n] ·Pr[X2 = n] · · ·Pr[Xk = n].

Now the left-hand side above is 0, since there’s no way each server can have all n jobs! But the
right-hand side is nonzero; each Pr[Xi = n] = (1/k)n.

But you know what? It’s cool. We’re going to be using the Union Bound, and one beauty of the
Union Bound is that (like Linearity of Expectation), it does not care whether the events it involves
are independent or not.

The average load after doing random load balancing is clearly n/k, just because there are n
total jobs and k servers. Further, we have

E[Xi] = n/k

for each i (by the formula E[Binomial(n, p)] = np, e.g.). So, as is intuitive, each server is expected
to have n/k jobs. But we are interested in the maximum load among the k servers. . .

Let
M = max(X1, X2, . . . , Xk),

a random variable representing the maximum load. Our goal is to show a statement of the form

Pr[M ≥ n/k + c] ≤ small
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where c is not too large. Then we’ll be able to say, “With high probability, the maximum load is
at most n/k + c.” We’ll let you in on a secret: we’re eventually going to be able to take

c = 3
√

ln k
√
n/k.

You might say to yourself, “uh, is that good?” Yeah, it’s pretty good, actually. The 3
√

ln k part is
really quite small, and the rest of the deviation,

√
n/k, is only the square-root of the average load.

So, in a concrete setting with n = 106 and k = 103, the average load is

n/k = 1000,

and our deviation here is
c = 3

√
ln 1000

√
1000 ≈ 250.

So our result will show, “With high probability, the maximum load is at most 1250.” We’ll see
what “high probability” means next lecture.
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