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A b s t r a c t  

The s tudy of hashing is closely related to the analysis 
of balls and bins. Azar et. al. [1] showed that  instead 
of using a single hash function if we randomly hash a 
ball into two bins and place it in the smaller of the 
two, then this dramatical ly lowers the max imum load 
on bins. This leads to the concept of two-way hashing 
where the largest bucket contains O(log log n) balls with 
high probability. The hash look up will now search in 
both  the buckets an i tem hashes to. Since an i tem may 
be placed in one of two buckets, we could potentially 
move an item after it has been initially placed to reduce 
max imum load. Using this fact, we present a simple, 
practical hashing scheme that  maintains a max imum 
load of 2, with high probability, while achieving high 
memory  utilization. In fact, with n buckets, even if the 
space for two items are pre-allocated per bucket, as may 
be desirable in hardware implementations,  more than n 
items can be stored giving a high memory  utilization. 
Assuming truly random hash functions, we prove the 
following properties for our hashing scheme. 

• Each lookup takes two random memory  accesses, 
and reads at most  two items per access. 

• Each insert takes O(log n) t ime and up to log log n +  
O(1) moves, with high probability, and constant 
t ime in expectation. 

• Maintains 83.75% memory  utilization, without re- 
quiring dynamic allocation during inserts. 

We also analyze the trade-off between the number 
of moves performed during inserts and the max imum 
load on a bucket. By performing at  most  h moves, we 
can maintain a maximum load of O(hlogl((~og~og:n/h) ). So, 
even by performing one move, we achieve a bet ter  bound 
than by performing no moves at all. 

1 I n t r o d u c t i o n  

The study of hashing is closely related to the analysis 
of balls and bin. One of the classical results in this area 
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is that ,  asymptotically, if n balls are thrown into n bins 
independently and randomly then the largest bin has 
(1 + o(1)) In n~ In Inn  balls, with high probability. Azar 
et. al. [1] showed that  instead of using a single hash 
function, if we randomly hash a ball into two bins and 
place it in the smaller of the two, then this dramatical ly 
lowers the max imum load on bins. This leads to the 
concept of two-way hash functions where the largest 
bucket contains O( loglogn)  balls. The hash look up 
will now search in both the buckets an i tem hashes 
to. So dramatic  is this improvement  that  it can be 
used in practice to efficiently implement hash lookups 
in packet routing hardware [3]. The two hash lookups 
can be parallelized by placing two different hash tables 
in separate memory  components.  However, to simplify 
our presentation and analysis, we will assume tha t  only 
one hash table is used. We will also assume that  the 
hash functions used are truly random. 

Note tha t  since an i tem may be placed in one of two 
buckets, we could potentially move an i tem after it has 
been initially placed to reduce max imum load. While it 
was known that  if all the random choices are given in 
advance, balls could be assigned to bins with a maxi- 
mum load of 2 with high probabil i ty [6], we show that  
this can be achieved on line while support ing hash up 
date operations. In fact, even more than  n, up to 1.67n, 
items can be stored in n buckets, with a max imum load 
of two items, by performing at  most log logn  + O(1) 
moves during inserts, with high probability. Even if 
the space for two items are pre-allocated per bucket, 
as desirable in hardware implementat ions to avoid dy- 
namic allocation, this represents only a 16.25% wastage 
of space - over 83.75% utilization. Memory utilization 
is a crucial issue in several hash implementations,  es- 
pecially hardware implementat ions where a large num- 
ber of memory  components consume critical resources 
of board space, ASIC pin count and power. Our algo- 
r i thm requires a bfs (breadth first search) exploring at 
most  O(log n) nodes with high probabil i ty and constant 
in expectation. Alternatively, to avoid a bfs, we show 
that  one could simply perform a random walk of length 
O(log n) to maintain a max imum load of two provided 
m < 0.65n; for larger m this would give a constant  load 
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as long as rn = O(n) .  
We also analyze the trade-off between the mmlber of 

moves performed during inserts and the maximum load 
on a bucket. A solution requiring fewer moves may be 
more attractive in practice as moves may be expensive; 
also it may be desirable to avoid a bfs traversal that  
may be infeasible in hardware implementations. By 
performing at most h moves during inserts, we can 
maintain a maximum load of O( lo~lo~n ~, h log(log log n/h) )" S o  
even by performing one move, we achieve a better 
bound than by performing no moves at all. This result 
holds even if the hash functions used are not truly 
random but are O(log n)-way independent. Setting h = 
O(loglogn) implies that we can maintain a constant 
maximum bucket size even if O(log n)-way independent 
hash functions are used. Several recent works [19] [12] 
demonstrate how such functions can be evaluated in 
constant time and implemented efficiently without using 
much storage. 

This idea of moving items has been used earlier in 
cuckoo hashing [20[, however, they allow only one item 
per bucket. With two hash tables this requires 100% 
memory overhead. They also show that the amortized 
insert time with cuckoo hashing is a constant. Fotakis 
et al [16] generalized the method to d-ary hashing, using 
d hash tables, and truly random hash functions, but still 
allowing only one item per bucket. They showed that 
with e memory overhead, one can support hash lookups 
in O(ln l/e) probes and constant amortized insert time 
assuming the hash functions used are truly random. 
Our use of bN to find a bucket with empty space is 
similar to theirs. They also provide an alternate scheme 
that performs lookups in O(ln 2 l /e) probes while using 
polynomial hash functions of degree O(ln l /e) that can 
be evaluated in constant time. 

However, in practice, memory operations requiring 
more random accesses is more expensive than reading 
the stone amount of memory in few accesses and larger 
bursts. For most forms of memory such as DRAMs 
and disks, the latency of the initial random access is 
much higher than that of fetching data from subsequent 
locations. Also, in hardware implementations, probing 
a large though constant number of tables will require as 
many memory components to be accessed efficiently in 
parallel. Our method involves two memory accesses and 
achieves a 83.75% memory utilization. Note that this 
utilization is what can be provably achieved and is not 
tight; although we can show an upper bound of 93% for 
our algorithm. At the same time, we should point out 
that our stated memory utilization is proved assuming 
that the hash flmctions used are truly random. 

Another recent closely related but as yet unpub- 
lished work [13] studies the same algorithm as ours but 

for larger bucket sizes. They show that with buck- 
ets of size O(1/e), and two hash tables, a dictionary 
data structure can be maintained with e fraction space 
overhead. Further, they show that  for buckets of size 
more than about 90/e, inserts can be performed in con- 
slant expected time. Other related work includes the 
first static dictionary data structure with constant look 
up time by Fredman, Komlos and Szemeredi [15] that 
was generalized to a dynamic data structure by Diet- 
zfelbinger et al. in [8] and [10]. In practice, however, 
these algorithms are more complex to implement than 
cuckoo hashing. Extensive work has been done in the 
area of parallel balls and bins [2] and the related study 
of algorithms to enmlate shared memory machines (as 
for example, PRAMs) on distributed memory machines 
(DMIVis) [11] [5] [18] [22]. This setting involves a paral- 
lel game of placing balls in bins (the so-called collision 
game) where all n balls participate in rounds of parallel 
attempts to assign balls to bins. In each round, you test 
both locations of every ball that has not been placed yet. 
If a ball has a location tested by at most some constant 
number of other balls, you place it. It has been shown 
in that loglogn + O(1) rounds indeed suffice to place 
all n balls, with high probability [11] [5]. This however 
does not imply our result that  loglogn + O(1) moves are 
sufficient to maintain maximum load of 2 because of the 
different setting. 

2 O v e r v i e w  of  T e c h n i q u e s  

Viewing buckets as bins and items as balls, we can look 
at the hashing process as if m balls are being assigned 
to n bins. For each ball two bins are chosen at random. 
If the bins are imagined to be the vertices of a graph, 
the two bins for a ball can be represented by an edge. 
This gives us a random graph G on n vertices containing 
m edges. By making this graph directed, we could use 
the direction of an edge to indicate the choice of the bin 
among the two for placing the ball. The direction of 
each edge is chosen online by a certain procedure. The 
load of a vertex (bucket) is equal to its in-degree. For 
each edge (item) insertion, the two-way hash algorithm 
directs the edge towards the vertex with the lower in- 
degree. During the hash process, say U is one of the 
vertices a ball gets hashed to. Observe that if V U  is a 
directed edge, and if the load on V is significantly lower, 
we could perform a move from U to V, thus freeing up a 
position in U. Essentially, in terms of load, the new ball 
could be added to either U or V, whichever has a lower 
load. This principle could be generalized to the case 
where there is a directed path from V to U, and would 
result in performing moves and ipping the directions 
along all tile edges on the path. If there is a directed 
sub-tree rooted at U, with all edges leading to the root, 
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we could choose the least loaded vertex in this tree to 
incur the load of the new ball. With this understanding, 
we will say that  W is a child of X if X W  is a directed 
edge. So, our hash insert algorithm looks as follows. 

• Compute the two bins U1 and U2 that the new item 
to be inserted hashes to. 

• Explore vertices that can be reached from U1 or U2 
by traversing along directed edges in the reverse 
direction. 

• Among such vertices, find one, V, with low load 
that  can be reached say from Us. 

• Add the new item to Us and perform moves along 
the path fi'om U1 to V so that only the load on V 
increases by one. 

Let s = 2 m / n  denote the average degree of the 
undirected random graph G. Note that the same graph 
G can be viewed as a directed or an undirected graph. 
Throughout the paper G refers to the undirected version 
unless stated otherwise or clear to be so from the 
context. Throughout the paper we will assume that 
s is a constant. It turns out that the success of our 
algorithm in maintaining low maximum load depends on 
the absence of dense subgraphs in this random graph. 
We show that such dense subgraphs are absent when 
s < 3.35, giving an algorithm that works with bucket 
size at most 2 and requiring at most loglogn + O(1) 
moves for inserts with high probability (section 3). 
Note that the bound of 3.35 for s may not tight but 
is provably no more than 3.72. We then analyze the 
trade off between number of moves during inserts and 
maximum bucket size using the technique of witness 
trees [5] [18] [2], making significant adaptations to our 
problem (section 4). 

3 C o n s t a n t  M a x i m u m  B u c k e t  S ize  

In this section we show that  for s < 3.35 by performing 
at most log log n + O(1) moves, we can ensure that  with 
high probability no bucket gets more than 2 items. 

For an insert, we search backwards from a given 
node in bfs order, traversing directed edges in reverse 
direction, looking for a node with load at most one. 
To simplify the analysis, we assume that during the 
backward search, the algorithm visits only 2 children for 
each node even if more may be present. We will show 
that  by searching to a depth of loglogn + O(1), with 
high probability, we find a node with load at most one. 
First, we show that if the backward search is allowed to 
proceed to unlimited depth, the success of the algorithm 
is related to a certain property of the random graph G. 

LEMMA 3.1. If  the backward search during inserts is 
allowed to p'lvceed to any depth, the above algorithm 
succeeds in inserting all m items while maintaining a 
maxirr~,,,m load of 2 'if and only 'if the graph G does 
not have a subgraph with density greater than 2. Here 
density is the ratio of number of edges to vertices in the 
subgraph. 

Proof. Clearly, if there is such a subgraph, it is impos- 
sible to orient the edges so that the in-degree on every 
vertex in the subgraph is at most 2. So it is not possi- 
ble to have inserted all elements and still have a load at 
most 2 on every vertex. 

Conversely, if an insert does not succeed, it means 
the backward search does not find a node of load less 
than 2. Since the search was not limited to a bounded 
depth, it must have got stuck in a set of nodes all with 
load at least two and leading to each other by traversing 
edges in reverse direction. Then this set of nodes is a 
subgraph of density at least two. 

The existence of dense subgraphs in random graphs 
displays a critical point behavior; that  is, there is a sharp 
threshold such that  ahnost all random graphs with edge- 
density larger than the threshold value have such a 
subgraph and ahnost all with edge-density less than the 
threshold value have none. This is because the existence 
of a dense subgraph is a monotone property, and all 
such properties were shown to display a sharp threshold 
behavior by Friedgut and Kalai [14]. A closely related 
property, the existence of a k-core in random graphs, has 
been studied extensively and the threshold values have 
been pinned down exactly. A k-core is a maximal non- 
empty subgraph where every node has degree at least k. 
Pittel et al [21] showed that  for the existence of a 3-core 
the critical value is about 3.35. Note that existence of a 
subgraph with density greater than 2 implies existence 
of a 3-core. This is because by iteratively deleting nodes 
with degree at most 2 we must be left with a non-empty 
3-core as the number of deleted edges is at most than 
twice the number of deleted vertices, less than the total 
number of edges. This means that  the threshold value 
for the existence of a 2-dense subgraph is at least 3.35. 
We will show that it lies between 3.35 and 3.71. Further, 
we will show that for s < 3.35, not only does an inserts 
succeed with high probability but also takes less than 
log log n + O(1) moves. It is interesting that this value 
of s coincides with the threshold value for existence of a 
k-core, but not surprising as we use methods similar to 
that for k-core in lower bounding the threshold value. 
Although this value was also shown to be tight for the 
existence of 3-core by Pittel et al [21], it is unlikely to 
be so for the existence of 2-dense subgraph. 

Since our strategy is to search for a node with load 
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at most one, first we show that it is unlikely to get stuck 
in a situation where o(n) nodes have been explored, 
each with load at least 2, and they all lead to one 
another with no new nodes to visit. This follows fi'om 
the following lemma as if we do get stuck, we have found 
an induced subgraph where every node has in-degree at 
least two. 

LEMMA 3.2. With high probability, 1 - O(1/n 2) there 
does not exist an induced subgraph of size o(n) in G 
where every node has in-degree at least 2. This implies 
that the backward search cannot get stuck with high 
probability if it is allowed to proceed to any depth. 

Proof. If there is such a subgraph of x nodes, it must 
have at least 2x edges. We will show that the probability 
of such an event is negligible. Number of ways of 
choosing x vertices and 2x edges from the m edges is 

(~n/2,~ Probability of a given edge falling in this ( ; ) ,  2~ , '  

subgraph is _< ~ So the probability of finding such 

a subgraph of x nodes is 

< n sn/2 (x 2)2x 

- x 2x n 2 

< (e~)~(es~/2~2x(~4x 
-- X 2X ~ n" 

< (e3s2x)x 
- 16n 

We need to sum of this expression over all possible 
values of x. Since x is at least 2 and at most o(n), 
the total probability is O(1/n2). 

Let us perform a bN on the undirected graph G 
starting from a certain node V to a depth of h. Note 
that this is different from the backward search from 
the same node to a depth of h that also involves a bfs 
along directed edges in reverse direction. To distinguish 
between the two we will refer to the former as 'bfs on the 
undirected graph' and the latter as 'backward search'. 
Let B F S h ( V )  denote the subgraph visited by the bfs 
on the undirected graph to a depth of h. Clearly the 
nodes visited in the backward search to a depth of h 
will be a subset of those visited in B F S h ( V )  to a depth 
of h. We will compare this bfs on the random undirected 
graph G to a branching process. Since sn/2 edges are 
randomly thrown into the graph G on n vertices, each 
of the total of sn endpoints of these edges are chosen 
randomly. If we ignore the possibility of forming self 
loops and choose these endpoints independently, a node 
will have k edges incident on it with probability ak = 
(~') (1/n)k(1 - 1/'n) s'~-k ,~ e-Ssk/k!  (accurate for large 
n and k < <  n and can be safely used in summations). 
This probability is asymptotically accurate even if we 

condition on a certain subgraph with at most o(n) nodes 
and edges as it makes a negligible difference in the ratio 
of remaining nodes and edges. 

Consider a branching process where each node has 
k children with this probability ak; this branching 
process is completely separate from the bfs and simply 
constructs a tree where each node has k children with 
this probability ak. Let BRTh be the tree obtained 
by running such a branching process to a depth of h. 
We will later show that assuming no cycles are found 
during the bfs to depth h, the tree B F S h ( V )  that is 
obtained has asymptotically the same distribution as 
that of BRTh. If BFS h ( V)  is a tree and only contains 
nodes with load at least two, then one can embed a 
complete, balanced binary tree of depth h in it. We 
will show that the probability of this event is close 
the probability of the being able to embed a complete, 
balanced binary tree of depth h in BRTh. The next two 
lemmas show that it is unlikely to be able to embed a 
complete, balanced binary tree of depth h in BRTh if 
s < 3.35. 

LEMMA 3.3. Let Pi be the probability that a complete, 
balanced binary tree of depth i can be embedded in the 
tree BRTi  obtained by running the branching process to 
depth i. Then Pi+l = 1 - e-P~s(1 +pis)  

Proof. We compute Pi recursively. Look at a node at 
height i + 1. At least two of its children nmst satisfy 
the recursive property which happens with probability 
pi. If there are k children, probability that less than 2 
of them satisfy the property is (1 _p~)k + kp~(1--pi) k - 1  . 

Probability of having k children = ak 
So, 

P i + l  : E a k ( 1  - (1 _p i ) k  _ kpi(1 _pi)~.-1) 
k~_2 

= E a k ( 1  - (1 - p i )  k - kp~(1 _pi)a-1)  
k 

: 1 - E a k ( i  - p i ) k  _ E a ~ k p i ( 1  - p i )  k-1 
k k 

8 k 8 k 
= 1 - - e - s E ~ , . l ( 1 - - p ~ ) k - - e - s E - ~ k p ~ ( 1 - - p i )  k-1 

k k 

= 1 - -  e - S e  s ( 1 - p i )  --  e - S p i s ~  S k - 1  
k>l (£----~)! (1 -- pd  k - t  

= 1 - -  e - s e  s ( 1 - p i )  - -  e - S p i s e  s ( 1 - p i )  

= 1 -  e -P~S( l+ps)  

Note that in this computation the approximation 
of ak as e-Ssk/k!  need not be used; each summa- 
tions can be computed with the exact value of ak = 
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('k~)(U,n)k(1 - l / n )  "n-k.  This  still does not  affect the 
final value. 

LEMMA 3.4. For any s < so ~ 3.35, the probability 
that a complete, balanced binary tree of depth h can be 
embedded in BRTh,  can be made smaller than 1/n  c, for 
any constant c, by choosing h = log logn + O(1) 

Proof. As long as s is such that  1 - e-P~(1 + ps) is 
always less than p for any p E (0, 1], the sequence p~ 
is monotonically decreasing. If  ps is very snmll this 
expression is close t o  p282 as e -ps can be approximated 
as 1 - p s .  If P i - P ~ + i  is at least some small positive 
constant, in a constant number  of steps p can be made 
smaller than 1/(10s), after which it s tarts  decreasing 
quadratically each step with the recursion Pi+l = P~ s2 
that  is equivalent to pi+ls ~ = (p is2) 2. So after this 
point, in log logn + O(1) steps, the probabili ty should 
drop below 1/n  c. 

We want that  for any p C (0, 1] 

1 + p s  
1 - e-PS(1 + p s )  < p ¢ v  e ps < - -  

1 - p  

By writing both sides as a Taylor series in p and 
comparing, we see that  this is satisfied if 

s2/2 < s + l ~ s < v/3 + l < 3.74 

The exact value of so is determined by setting 
it to the smallest value of s for which the flmction 
f ( x )  = 1 + xs  - eXS(1 - x) satisfy the condition f ( x )  > 0 
in the interval [0, 1] 

A bet ter  value of so ~ 3.35 is obtained by plotting 
graphs for the functions f ( x )  = 1 + xs  - eXS(1 - x) in 
the interval [0, 1] showing that  f ( x )  > 0 for s < 3.35 in 
this interval. 

This value of s is tight; that  is, for s > 3.36 it can 
be shown that  p converges to 0.5, implying that  it is 
possible to embed a binary tree. 

Next we extend this result on the tree obtained fi'om 
the branching process to any tree that  may be obtained 
by the bfs. 

LEMMA 3.5. With high p~vbability, 1 -O(1 /nC-1) ,  there 
does not exist a node V in G so that the bfs f i r m  V to 
depth h = l o g l o g n + O ( 1 )  does not encounter any cycles 
and results in a tree containing a complete, balanced 
binary tree of depth h embedded in it. (Note that the 
bfs could be perfo~'rned from an edge U V  where the first 
level of bfs fTvm the root V does not visit U. This is a 
technical detail that will be used later.) 

Proof. We will argue tha t  if the bfs results in a tree, its 
distribution is asyInptotically same as that  produced 

5 

by the branching process. First note that  the total  
number of nodes visited is small as compared to n, as 
the maximum degree d is O(log n) with high probabil i ty 
and the values of h in consideration is O(log log n), and 
so the total  number of nodes, d h, is (logn) O(l°gl°g~0. 

Even if we condition on the existence of a certain 
subgraph with at most o(n) nodes and edges it makes 
a negligible difference in the ratio of remaining nodes 
and edges. So during the bfs, after exploring say at 
most  x nodes and edges (x is at most (logn)°(l°gl°g"O), 
the conditional probabili ty that  the next node to be 
expanded has k (k is at most  O(log n)) edges emanat ing 
from it all of which lead to new nodes, is very close to 
ak. I t  can be verified that  the conditional probabil i ty 

[n~ / sn /2"~k l t  2 ~k(1 _ 2(n -x )  s n / 2 - x  
is at most kk)k k ) "k~T=~=U'-J t (.n_l)2J - 
number  of ways of choosing k child nodes and edges 
to those nodes is at most  (~)(s'[/2)k!; probabil i ty tha t  
one of the k edges leads to the chosen child is at most  
1 / ( ,~x)  ; probabili ty tha t  each of the remaining sn/2-x 
edges are not incident on this node is at least ( n - x ) / ( ~ )  
as at least n - x edge positions are forbidden. This 
upper  bound differs from ak by at most  a multiplicative 
factor of 1 + O ( k x / n ) ,  for the small values of k and x 
under consideration. So the probabil i ty that  the bfs 
and the branching process produce identical trees of 
a given structure with at most  x nodes, differ by at 
most  a multiplicative factor of 1 + O(kx2 /n )  = 1 + o(1). 
So by applying this argument  to all possible trees t lmt 
can have a complete, balanced binary tree of depth 
h, embedded in it, we can conclude that  since with 
high probabili ty of 1 - O(1/nC), BRTh  cannot have a 
complete binary tree embedded in it, same must be true 
about  B F S h ( V )  even if it were a tree. Clearly this can 
be extended to all vertices V with high probabili ty of 
1 - O ( 1 / n C - 1 ) .  

So far we have only considered the case tha t  
B F S h ( V )  is a tree. Let us prove tha t  it is very unlikely 
that  the bfs finds too many edges tha t  create cycles, 
where by cycle-creating edges we mean the edges tha t  
lead to already visited nodes during the search.. 

LEMMA 3.6. With high probability, 1 - O(1 /n  c) there 
does not exist a subgraph of x _< c log n nodes in G with 
at least x + O(c) (precisely, x + c(4 + log(s//2))) edges. 

Proof. If  there is such a subgraph of x nodes, we will 
show that  the probabil i ty of such an event is negligible. 
Nmnber  of ways of choosing x nodes and x + u edges 
from the sn /2  edges is (n~ (sn/2~ Probabil i ty of a given \ x ]  k 2 + u ] '  

edge falling in this subgraph is -< 7~ So the total  
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probability is 

n sn/2 x 2 ( 2 x+2" < ~ .  
- x x + u  

e n  x e s n / 2  x+u  x 2 x + 2 u  

_< ( T )  ( T Z Z )  (~) • 

<_ e~+"(~./2)~+u(~)" 
< (es)~'e~x(-S)~(~u 
- " 2 " " 2 "  " n "  

e s  .u 2 c l o  n S lo n c l o g ? ~  u 
< (T)  e ~ (~)~ ~ (--:£--) 

e8 u~,c(2+log(s/2)) [ c log n ~u -< (V) " ~ - - i / - '  

By setting u = c(4 + log(s/2)) this becomes O(1/n  c) 

The following lemma shows that a bN to a depth 
of o(logn) can not encounter more than 5c edges that 
create cycles. 

LEMMA 3.7. For s < so ~ 3.35, with high probability, 
1 - O(1/'n~), in a subtree T of G with height o(logn) 
there cannot be 5e edges in G that are between nodes in 
T but are not edges of T.  

Pro@ For if there were, then consider the tree spanning 
end-points of these 5c edges from G not in T, obtained 
by taking the union of all the paths from these end- 
points to the root. As the number of endpoints of 
these 5c edges is at most 10c and each requires at most 
o(log n) edges to connect to the root, the size, x, of this 
spanning tree is clearly less than clog n. 

Adding the 5c edges to the spanning tree gives us 
at least x + 5c edges. By lemma 3.6, for s < 4, this is 
unlikely and has probability at most O(1/n~). 

Now we will show that a large, complete binary tree 
cannot be embedded in G. 

LEMMA 3.8. With high pwbability, 1 - O(1/'nC), it is 
not possible to embed a complete, balanced binary tree 
B of height h = l o g l o g n + O ( 1 )  in the random graph G. 

P w @  Assume that we can embed such a binary tree 
B rooted at V in G. Perform a bfs from V to a depth 
of h. By lemma 3.7, at most 5c cycle creating edges 
can be found with high probability in B F S h ( V ) .  Let 
B F S ~ ( V )  denote the tree obtained by deleting these 5e 
edges from B F S h ( V ) .  There must be some node V' in 
B at depth at most log(Sc)+ 1 so that the binary subtree 
rooted at that node is still intact in BFS~(V) ;  that is 
it does not contain any of the 5c deleted edges. Let B ~ 
denote the binary subtree of B rooted at V ~. Now look 
at the at most 10e paths from the endpoints of these 

deleted edges to V. Since any single path can intersect 
at most 2 nodes at a certain level in B ~, there nmst be 
some node V" at depth log(20c) + 1 in B ~ that  is not 
on any of these 10c paths. Also, at least one of the 
two children of V" in B'  (say W) must also be a child 
of V" in B F S ~ ( V ) ,  as V" has at most one parent in 
BFS ~(V) .  Look at the binary subtree B"  of B p rooted 
at W. The height of B"  differs from that of B by at 
most log(5c) + log(20c) + 3. Also the bfs from the edge 
V " W  (that is, the first level of the bfs fi'om W does not 
visit V") is free of cycles as otherwise V"  is on one of the 
10c paths. Further it has a complete, balanced binary 
tree B" embedded in it. By choosing h large enough we 
can ensure that height of B"  is at least that  required by 
lemma 3.5 giving a contradiction 

We are now ready to prove that during an insert a 
backward search to a depth of log log n + O(1) nmst find 
with high probability a node with load less than 2. The 
total search time is at most O(log n). 

THEOREM 3.1. For" s < so ~ 3.35, with high probabil- 
ity, 1 - 0 ( 1 / n 2 ) ,  during an insert, ,if we traverse back- 
ward to a depth o f log logn  + O(1), we will have found 
a node with load less than 2, with high probability, while 
searching at most O(log n) nodes. The expected time for 
this search is O(1). 

Proof. Assume that during an insert, we don' t  find 
a node of load less than 2. Then since with high 
probability by lemma 3.2 we cannot get stuck after a 
few levels and by lemma 3.7 we cannot encounter more 
than 5e cycle producing edges, there nmst be a node at 
depth log(5c)+ 1 so that the backward search under that 
does not find any cycles. This gives a complete binary 
tree of height log log n + O(1), contradicting lemma 3.8. 

The expected depth of search is constant as can be 
seen by the quadratic drop of Pi with i. 

This proves that inserts can be made while main- 
taining a maximum load of 2, with high probability. 
The algorithm works even if the number of items, m 
is greater than n as long as 2 m / n  < 3.35. Even 
if the two entries in each buckets are statically allo- 
cated, we can achieve a memory utilization rn/(2n) of 
3.35/4 > 83.75%. Thus the memory wastage is only 
16.25%. 

Note that our value of s = 3.35 may not be tight for 
maintaining a maximum load of two as the calculation 
was done based on existence of a complete binary tree, 
which may not be necessary for the existence of a 2- 
dense subgraph nor for being able to perform inserts in 
log log n + O(1) moves. It is easy to show, however, that  
for s > 3.72, it is impossible to maintain a maximum 
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load of two. This is because for such a random graph, by 
deleting isolated nodes and nodes of degree one, we end 
up with a non-empty component  with density greater 
than 2. 

Generalizing to constant bucket size larger than 2: 
Our analysis for max imum bucket size of 2 can be 
generalized to any constant maximum load i. I t  turns 
out that  the best provable memory  utilization remains 
around 80% for initial value of i > 2 and then drops for 
larger i. 

3.1 R a n d o m  W a l k .  The previous algorithm per- 
forms a bfs. An al ternate algorithm is to simply per- 
form a random walk to look for a lightly loaded node. 
We show that  for m < 0.65n, a random walk of length 
O(log n) will reveal a node with load at most  1. Again, 
first we ignore the possibility of running into cycles. 

THEOREM 3.2. With high probability, 1 - O(1/n2),  for 
any s < 1.3, a random walk of length O(log n) will find 
a node with load at most two. 

Proof. We will show that  the probabili ty of finding a 
long pa th  where every node has load at least two is 
negligible. Probabil i ty that  a node has k children is 
e-Ssk/k! .  Number  of ways of choosing the next node 
on the pa th  is at most k. So, for each node, number  of 
ways of choosing next node weighted by probabil i ty is 

~k_>2 ~-~k! = s(1 -- e-~).  As long as this is less than 
one, the probabili ty of finding a pa th  of length O(log n) 
is negligible. This is true for s < 1.3. 

THEOREM 3.3. With high probability, 1 - O(1/n2),  for 
m = n, a random walk of length O(log n) will find a 
node with load at most 4. 

Proof. We will show that  the probabil i ty of finding a 
long pa th  where every node has load at least four is 
negligible. Probabil i ty tha t  a node has k children is 
e-*sk/k! ,  where in this case s = 2. Number  of ways of 
choosing the next node on the pa th  is at most  k. SoT 
for each node, number of ways of choosing next node 

e-22~ weighted by probabil i ty is ~k>4-"'k~---" Since this is 
less than one, the probabil i ty of~inding a pa th  of length 
O(log n) is negligible. 

To address the possibility of cycles, on finding an 
edge that  produces one, we simply backtrack by the 
fewest possible number  of edges and continue our search 
as if in a DFS. We will show that  this backtracking can 
not happen too often. If  this happens c times, we get a 
graph of size at most  O(log n) + c that  has c more edges 
than nodes. By choosing c the be large enough constant,  
we can satisfy the condition of lemma 3.6, proving that  
this is unlikely. 

4 G e n e r a l i z i n g  to  f e w e r  m o v e s  

So far we have looked at the number  of moves required 
to maintain a constant load. Here we examine the 
max imum load when fewer bins are explored. In 
particular, we could examine only the two bins and 
their children. So, if an i tem gets hashed to say U1 
and U2, we could examine only U1, U2 and the children 
of U1 and U2, and pick the least loaded of these to bear 
the new load. This would require at most  one move. 
Instead of examining the children to a depth of one, 
we could explore all the descendants to a depth of h 
by performing a bfs along directed edges in the reverse 
direction. By restricting the search to a depth of h, 
we ensure tha t  at most  h moves are required. In this 
section we upper  bound the max imum load when all 
descendants up to depth h are examined during inserts. 

The basic intuition is tha t  if the load of the new 
item is borne by a node with load i, then each of 
examined nodes must have at least i children. So we 
must have explored roughly a total  of i h nodes, each 
with a load of at  least i. If  Pi is the probabil i ty of 
a node having load at least i, then assunfing these 
events are independent, they happen with probabil i ty 

i h i h 
Pi • This gives us approximately,  Pi+l = Pi , and 
so Pi = 2 -~('i-1)!h. Pi becomes o(1/n  c) for i > 
O(hlogl(~o~o~'n/h)) We give a more formal proof of this 
result without making the independence assumption. 

Our proof is based on the witness tree approach - 
one of earliest uses of this approach can be found in [5] 
[18] [2]. Consider an event tha t  leads to a load of 61 at  
a certain node. For this event to happen,  we will show 
that  there must  exist a tree of large size obtained by 
tracing all the events that  must  have happened earlier. 
The approach however requires significant adapta t ion to 
our problem as the directions of the edges change over 
time. To simplify the exposition, we will s tate the proof 
assuming m = n (s = 1); essentially, the same proof  
works for any constant s. 

Construction of the witness graph: Whenever the 
load of a node X becomes i, there must be a unique edge 
whose insertion causes this to happen. Say U1 U2 was 
this edge; that  is, U1 and U2 are the bins to which the 
i tem got hashed. Look at the directed graph when this 
edge was being added. During the insertion, a backward 
search to a depth of h was performed from both U1 
and U2. Say the node X was obtained by traversing 
back from U1 to depth of at most  h. We will say that  
the edge U1U2 is the i th contributing-edge of X,  U2 is 
the i th contributing-peer of X,  and the directed pa th  
from X to U1 along which moves were made, is the 
i th contributing-path for X.  Since X is a node with 
minimum load among the ones visited, it nmst  be the 
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case that  all the nodes at depth at most h from U~ must 
have load at least i -  1. Note tha t  the contributing edge 
U1 U2 must be newer than and therefore distinct fl'om all 
the edges traversed in backward search from U2. Also 
for each node and each value of i the ith-contributing 
edge has to be unique. 

The witness graph is obtained by recursively 
chasing contributing edges for nodes visited in the 
backward search fl'om the contributing peer U2. First 
we make a simplifying assumption that  during the 
construction of the witness graph, we never run into 
cycles, always leaving the graph as a tree. Later, as 
in section 3, we will argue that  the number of edges 
that  produce cycles is few enough that  they can be 
ignored. Our goal is to obtain a large witness tree with 
high degree nodes and argue that  such a subgraph is 
unlikely to exist in G. The problem is that  even with 
our assumption of not encountering cycles, it is still 
possible to visit earlier nodes through contributing 
paths, as contributing paths could completely consist 
of edges in the visited subtree, not leading to any 
new nodes. We overcome this issue by computing the 
witness tree by the following recursive procedure. 

For a given/-contr ibut ing edge U1 U2: 

Say, U2 is the i th contributing-peer corresponding 
to this edge; that  is, the load for this insert was 
taken by some node under U1. 

Look at the subtree, T, (must be a tree by assump- 
tion of not encountering cycles) obtained by per- 
fornfing a backward search to depth h from node 
U2 when the insertion took place. Look at the set 
of leaves, L, of this subtree. At that  t ime each node 
in T has load at least i -  1. Since each internal node 
in L has at least i - 1 children the number of edges 
in L is at most 21L I. 

Look at the set S of all edges that  are j -  
contributing edges for some node in L, for either 
j = i -  1 or i - 2  or i - 3 .  Essentially an edge 
e E S if and only if there is a node V c L and 
a j E { i -  1 , i -  2 , i - 3 }  such that  e is the j -  
contributing edge for V. Since the subtree T has at 
most 2[L I edges and the set S has 31L I edges, there 
must be a set Q of at least ILl edges in S that  are 
outside the subtree T. As all the contributing paths 
leading to these edges are older than the edge U1 U2 
that  connects the subtree to the rest of the witness 
tree, and since by assumption no cycles are encoun- 
tered, these edges in Q must be outside the entire 
witness tree constructed so far. To avoid cycles, 
the corresponding contributing paths must branch 
off T before reaching the contributing edge in Q. 

• Repeat  recursively for each j-contributing-edge in 
Q, where j > i - 3 

We chop the recursion depth down to I. Also, during 
the backward bfs, for each node, we pick only l children 
even if more may be present. Essentially, the witness 
tree looks like a tree of sub-trees linked by contributing 
paths. Each subtree has I h "children" subtrees and no 
node or edge is repeated. The height of this tree in 
terms of number of subtrees is 1. View all edges in this 
tree as undirected. 

For large enough l, we will show that  such a witness 
tree cannot exist with high probability. 

LEMMA 4.1. Assuming no cycles are encountered while 
constructing the witness tree, probability that such a 

lo~ log; n 
witness tree exists for 1 > hlog(loglogn/h) + 0(1) is at 
most O(1/nC), where c is any given constant. 

Pro@ We will calculate the probability by multiplying 
the the total number of possible such trees with their 
individual probabilities. Note that  all vertices, except 
those on the contributing paths, have at least 1 children. 

Ways of choosing I children: For a given node, 
nmnber  of ways of choosing these chiklren is C~); 
number of ways of assigning edges is at most nl; and 
the probability of realizing an assignment of edges is at 
most (=2)z So the total  probability of a given node 

n " 
hav ing /ch i ld ren  is ( ? )nZ(~)  ' < (.~)z. 

Ways of choosing a contributing path: As for the 
other nodes, these can only be on contributing paths of 
length at most h from a node to its contributing-peer. 
As pointed earlier, all such contributing paths of length 
at most h nmst branch off the subtree they originate 
from. For a given contributing pa th  this branching off 
point can be chosen in at most I h ways. 

Number of ways of choosing the rest of the pa th  of 
length at most h weighted by probabili ty < (munber 
of ways of choosing h vertices) x (number of ways of 
choosing h edges) x (probability of these edges falling 

n h n h [  2 "~h 2 h in the right place) _< t ~ )  -< So, total number 
of ways of choosing a contributing path  weighted by 
probabili ty is at most 2hl h = (2l) h. 

Total probability: Each subtree has at least l h-1 
nodes that  have l children each, and each subtree is 
rooted at one contributing path. So number of ways 
of choosing each subtree weighted by probabili ty is 

(2l)h _< 
Total number of such subtrees is at least l (l-])h. So 

total  number of ways of choosing witness trees weighted 
4e lhl (t-1)h 4e I n'  by probability is (-T) = (-7-) " We ueed to 

choose l such that  this probabili ty is o(1/n~). This is 
log log n 

achieved by setting l to hlog(loglogn/h) + O ( 1 )  
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So far we have assumed that the construction of the 
witness graph does not encounter any cycle producing 
edges. We will prove that it is very unlikely that it 
has too many edges that lead to cycles. Again as in 
section 3, using lemma 3.7 we argue that instead of 
starting with a node of load 61, if we start with a node 
of load 61 + 5c and at tempt to construct the witness 
tree to a recursion depth of I + 1, it is very unlikely to 
encounter more than 5c cycle producing edges. Since 
the node under the root contributing-peer has more 
than 5c children, at least one of them must be such 
that the witness graph construction under that node is 
free of cycle-producing edges, giving the desired result. 
This proves the following theorem. 

THEOREM 4.1. By searching to a depth h, with high 
probability, 1 -  O(1/n~) ,  an insert will not  lead to a load 
of  more than 6, , l o, gl?gn ... + 0(1~ for  any constant 

n i o g t l o g m g n / h  ) ~ ]~ 
C.  

Note that by setting h = O(loglogn),  we get that  
the maximum load is a constant, which is consistent 
with theorem 3.1. We will now show that this holds true 
even without the assumption that  the hash functions 
used are truly random. 

4.1 U s i n g  c l o g n - U n i v e r s a l  H a s h  F u n c t i o n s .  
We will now argue that theorem 4.1 holds even if 
we use c log n-universal (c log n-way independent) hash 
functions instead of truly random hash functions. The 
essential idea is to extend the argument of the low 
probability of existence of a witness tree. Our argument 
in section 4 was along the following lines: we outlined 
the "shape" of the witness tree and showed that the 
stun of the probabilities over all such trees in the 
random graph G is negligible. Since the witness trees 
we construct are of size 1 th = O(logn),  and the new 
hash functions we use are clog n-way independent, for 
some large enough constant c, the probability of finding 
a given witness tree (of size at most c logn)  in the 
graph is the same as before. So the earlier bound 
on the total probability of finding any witness tree, 
obtained by summation, still holds. Next, we used 
lemma 3.7, to handle the case when we find cycle 
producing edges while constructing the witness graph. 
Lemma 3.7 makes use of lemma 3.6 which is still true 
with c logn-way independent hash functions as lemma 
3.6 is only concerned with O(log n) edges in subgraphs 
of size O(log n). So we have shown: 

COROLLARY 4.1. The guarantees stated in theorem 4.1 
holds even 'if clog n-universal  hash funct ions  are used 
instead of  truly random hash functions,  for  some large 
enough constant c. 
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