
To appear in proceedings of ESA 2001. Springer Verlag.

Available on-line at http://www.brics.dk/ pagh/papers/

Cuckoo Hashing

Rasmus Pagh1 and Flemming Friche Rodler

BRICS2, Department of Computer Science
University of Aarhus, Denmark

{pagh,ffr}@brics.dk

Abstract. We present a simple and e�cient dictionary with worst case

constant lookup time, equaling the theoretical performance of the clas-

sic dynamic perfect hashing scheme of Dietzfelbinger et al. The space

usage is similar to that of binary search trees, i.e., three words per key

on average. The practicality of the scheme is backed by extensive ex-

periments and comparisons with known methods, showing it to be quite

competitive also in the average case.

1 Introduction

The dictionary data structure is ubiquitous in computer science. A dictionary is
used to maintain a set S under insertion and deletion of elements (referred to as
keys) from a universe U . Membership queries (�x 2 S?�) provide access to the
data. In case of a positive answer the dictionary also provides a piece of satellite
data that was associated with x when it was inserted.

A large literature, brie�y surveyed in Sect. 1.1, is devoted to practical and
theoretical aspects of dictionaries. It is common to study the case where keys
are bit strings in U = f0; 1gw and w is the word length of the computer (for
theoretical purposes modeled as a RAM). Section 2 brie�y discusses this restric-
tion. It is usually, though not always, clear how to return associated information
once membership has been determined. E.g., in all methods discussed in this
paper, the associated information of x 2 S can be stored together with x in a
hash table. Therefore we disregard the time and space used to handle associated
information and concentrate on the problem of maintaining S. In the following
we let n denote jSj.

The most e�cient dictionaries, in theory and in practice, are based on hash-
ing techniques. The main performance parameters are of course lookup time,
update time, and space. In theory there is no trade-o� between these. One can
simultaneously achieve constant lookup time, expected amortized constant up-
date time, and space within a constant factor of the information theoretical
minimum of B = log

�
jUj
n

�
bits [3]. In practice, however, the various constant

factors are crucial for many applications. In particular, lookup time is a criti-
cal parameter. It is well known that the expected time for all operations can
1 Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT). Work initiated while visiting Stanford University.
2 Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation.

be made a factor (1 + �) from optimal (one universal hash function evaluation,
one memory lookup) if space O(n=�) is allowed. Therefore the challenge is to
combine speed with a reasonable space usage. In particular, we only consider
schemes using O(n) words of space.

The contribution of this paper is a new, simple hashing scheme called cuckoo

hashing. A description and analysis of the scheme is given in Sect. 3, showing
that it possesses the same theoretical properties as the dynamic dictionary of
Dietzfelbinger et al. [7]. That is, it has worst case constant lookup time and
amortized expected constant time for updates. A special feature of the lookup
procedure is that (disregarding accesses to a small hash function description)
there are just two memory accesses, which are independent and can be done in
parallel if this is supported by the hardware. Our scheme works for space similar
to that of binary search trees, i.e., three words per key in S on average.

Using weaker hash functions than those required for our analysis, cuckoo
hashing is very simple to implement. Section 4 describes such an implementation,
and reports on extensive experiments and comparisons with the most commonly
used methods, having no worst case guarantee on lookup time. Our experiments
show the scheme to be quite competitive, especially when the dictionary is small
enough to �t in cache. We thus believe it to be attractive in practice, when a
worst case guarantee on lookups is desired.

1.1 Previous Work

Hashing, �rst described by Dumey [9], emerged in the 1950s as a space e�cient
heuristic for fast retrieval of keys in sparse tables. Knuth surveys the most im-
portant classical hashing methods in [14, Sect. 6.4]. These methods also seem to
prevail in practice. The most prominent, and the basis for our experiments in
Sect. 4, are Chained Hashing (with separate chaining), Linear Probing and
Double Hashing. We refer to [14, Sect. 6.4] for a general description of these
schemes, and detail our implementation in Sect. 4.

Theoretical Work. Early theoretical analysis of hashing schemes was typically
done under the assumption that hash function values were uniformly random and
independent. Precise analyses of the average and expected worst case behaviors
of the abovementioned schemes have been made, see e.g. [11]. We mention just
that for Linear Probing and Double Hashing the expected longest probe
sequence is of length
(logn). In Double Hashing there is even no bound
on the length of unsuccessful searches. For Chained Hashing the expected
maximum chain length is �(logn= log logn).

Though the results seem to agree with practice, the randomness assumptions
used for the above analyses are questionable in applications. Carter and Weg-
man [4] succeeded in removing such assumptions from the analysis of chained
hashing, introducing the concept of universal hash function families. When im-
plemented with a random function from Carter and Wegman's universal family,
chained hashing has constant expected time per dictionary operation (plus an
amortized expected constant cost for resizing the table).

A dictionary with worst case constant lookup time was �rst obtained by
Fredman, Komlós and Szemerédi [10], though it was static, i.e., did not support
updates. It was later augmented with insertions and deletions in amortized ex-
pected constant time by Dietzfelbinger et al. [7]. Dietzfelbinger and Meyer auf
der Heide [8] improved the update performance by exhibiting a dictionary in
which operations are done in constant time with high probability, i.e., probabil-
ity at least 1� n�c, where c is any constant of our choice. A simpler dictionary
with the same properties was later developed [5]. When n = jU j1�o(1) a space
usage of O(n) words is not within a constant factor of the information theoretical
minimum. The dictionary of Brodnik and Munro [3] o�ers the same performance
as [7], using O(B) bits in all cases.

Experimental Work. Although the above results leave little to improve from a
theoretical point of view, large constant factors and complicated implementation
hinder direct practical use. For example, the �dynamic perfect hashing� scheme
of [7] uses more than 35n words of memory. The authors of [7] refer to a more
practical variant due to Wenzel that uses space comparable to that of binary
search trees. According to [13] the implementation of this variant in the LEDA
library [17], described in [21], has average insertion time larger than that of
AVL trees for n � 217, and more than four times slower than insertions in
chained hashing3. The experimental results listed in [17, Table 5.2] show a gap
of more than a factor of 6 between the update performance of chained hashing
and dynamic perfect hashing, and a factor of more than 2 for lookups4.

Silverstein [20] explores ways of improving space as well as time of the dy-
namic perfect hashing scheme of [7], improving both the observed time and space
by a factor of roughly three. Still, the improved scheme needs 2 to 3 times more
space than linear probing to achieve similar time per operation. It should be
noted that emphasis in [20] is very much on space e�ciency. For example, the
hash tables of both methods are stored in a packed representation, presumably
slowing down linear probing considerably.

A survey of experimental work on dictionaries that do not have worst case
constant lookup time is beyond the scope of this paper. However, we do remark
that Knuth's selection of algorithms seems to be in agreement with current
practice for implementation of general purpose dictionaries. In particular, the
excellent cache usage of Linear Probing makes it a prime choice on modern
architectures.

2 Preliminaries

Our algorithm uses hash functions from a universal family.

De�nition 1. A family fhigi2I , hi : U ! R, is (c; k)-universal if, for any k
distinct elements x1; : : : ; xk 2 U , any y1; : : : ; yk 2 R, and uniformly random

i 2 I, Pr[hi(x1) = y1; : : : ; hi(xk) = yk] � c=jRjk.

3 On a Linux PC with an Intel Pentium 120 MHz processor.
4 On a 300 MHz SUN ULTRA SPARC.

A standard construction of a (2; k)-universal family for U = f0; : : : ; p� 1g and
range R = f0; : : : ; r � 1g, where p is prime, contains, for every choice of 0 �

a0; a1; : : : ; ak�1 < p, the function h(x) = ((
Pk�1

l=0 alx
l) mod p) mod r.

We assume that keys from U �t in a single machine word, i.e., U = f0; 1gw.
This is not a serious restriction, as long keys can be mapped to short keys by
choosing a random function from a (O(1); 2)-universal family for each word of
the key, mapping the key to the bitwise exclusive or of the individual function
values [4]. A function chosen in this way can be used to map S injectively to
f0; 1g2 log n+O(1), thus e�ectively reducing the universe size to O(n2). In fact, with
constant probability the function is injective on a given sequence of n consecutive
sets in a dictionary (see [7]). A result of Siegel [19] says that for any constant
� > 0, if the universe is of size nO(1) there is an (O(1); O(log n))-universal family
that can be evaluated in constant time, using space and initialization time O(n�).
However, the constant factor of the evaluation time is rather high.

We reserve a special value ? 2 U to signal an empty cell in hash tables. For
Double Hashing an additional special value is used to indicate a deleted key.

3 Cuckoo Hashing

Cuckoo hashing is a dynamization of a static dictionary described in [18]. The
dictionary uses two hash tables, T1 and T2, of length r and two hash functions
h1; h2 : U ! f0; : : : ; r�1g. Every key x 2 S is stored in cell h1(x) of T1 or h2(x)
of T2, but never in both. Our lookup function is

function lookup(x)
return T1[h1(x)] = x _ T2[h2(x)] = x.

end;

We remark that the idea of storing keys in one out of two places given by
hash functions previously appeared in [12] in the context of PRAM simulation,
and in [1] for a variant of chained hashing. It is shown in [18] that if r � (1+�)n
for some constant � > 0 (i.e., the tables are to be a bit less than half full), and
h1; h2 are picked uniformly at random from an (O(1); O(logn))-universal family,
the probability that there is no way of arranging the keys of S according to h1
and h2 is O(1=n). A slightly weaker conclusion, not su�cient for our purposes,
was derived in [12]. A suitable arrangement was shown in [18] to be computable
in linear time by a reduction to 2-sat.

We now consider a simple dynamization of the above. Deletion is of course
simple to perform in constant time, not counting the possible cost of shrinking
the tables if they are becoming too sparse. As for insertion, it turns out that the
�cuckoo approach�, kicking other keys away until every key has its own �nest�,
works very well. Speci�cally, if x is to be inserted we �rst see if cell h1(x) of T1
is occupied. If not, we are done. Otherwise we set T1[h1(x)] x anyway, thus
making the previous occupant �nestless�. This key is then inserted in T2 in the
same way, and so forth. As it may happen that this process loops, the number of
iterations is bounded by a value �MaxLoop� to be speci�ed below. If this number

of iterations is reached, everything is rehashed with new hash functions, and we
try once again to accommodate the nestless key. Using the notation x $ y to
express that the values of variables x and y are swapped, the following code
summarizes the insertion procedure.

procedure insert(x)
if lookup(x) then return;
loop MaxLoop times

if T1[h1(x)] = ? then { T1[h1(x)] x; return; }
x$ T1[h1(x)];
if T2[h2(x)] = ? then { T2[h2(x)] x; return; }
x$ T2[h2(x)];

end loop

rehash(); insert(x);
end;

The above procedure assumes that the tables remain larger than (1 + �)n cells.
When no such bound is known, a test must be done to �nd out when a rehash
to larger tables is needed. Note that the insertion procedure is biased towards
inserting keys in T1. As seen in Section 4 this leads to faster successful lookups.

3.1 Analysis

We �rst show that if the insertion procedure loops for MaxLoop = 1, it is
not possible to accommodate all the keys of the new set using the present hash
functions. Consider the sequence a1; a2; : : : of nestless keys in the in�nite loop.
For i; j � 1 we de�ne Ai;j = fai; : : : ; ajg. Let j be the smallest index such that
aj 2 A1;j�1. At the time when aj becomes nestless for the second time, the
change in the tables relative to the con�guration before the insertion is that ak
is now in the previous location of ak+1, for 1 � k < j. Let i < j be the index such
that ai = aj . We now consider what happens when aj is nestless for the second
time. If i > 1 then aj reclaims its previous location, occupied by ai�1. If i > 2

then ai�1 subsequently reclaims its previous position, which is occupied by ai�2,
and so forth. Thus we have aj+z = ai�z for z = 0; 1; : : : ; i� 1, and end up with
a1 occurring again as ai+j�1. De�ne sk = jh1[A1;k]j+ jh2[A1;k]j, i.e., the number
of table cells available to A1;k. Obviously sk � sk�1 + 1, as every key ai, i > 1,
has either h1(ai) = h1(ai�1) or h2(ai) = h2(ai�1). In fact, sj�1 = sj�2 � j � 1,
because the key aj found in T1[h1(aj�1)] or T2[h2(aj�1)] occurred earlier in the
sequence. As all of the keys aj ; : : : ; aj+i�1 appeared earlier in the sequence, we
have sj+i�2 = sj�2. Let j

0 be the minimum index such that j0 > j and aj0 2
A1;j0�1. Similar to before we have sj0�1 = sj0�2. In conclusion, jA1;j0�1j = j0� i
and sj0�1 = sj0�2 � sj+i�2 + (j0 � 2)� (j + i� 2) = sj�2 + j0 � j � i < j0 � i.
Thus, there are not su�ciently many cells to accommodateAi;j0�1 for the current
choice of hash functions.

In conjunction with the result from [18], the above shows that the inser-
tion procedure loops without limit with probability O(1=n). We now turn to

the analysis for the case where there is no such loop, showing that the insertion
procedure terminates in O(1) iterations, in the expected sense. Consider a pre-
�x a1; a2; : : : ; al of the sequence of nestless keys. The crucial fact is that there
must be a subsequence of at least l=3 keys without repetitions, starting with an
occurrence of the key a1, i.e., the inserted key. As earlier, we pick i and j, i < j,
such that ai = aj and j is minimal, and once again we have aj+z = ai�z for
z = 0; 1; : : : ; i� 1. There can be no index j0 > j + i� 1 such that aj0 2 A1;j0�1,
in that our earlier argument showed that the set cannot be accommodated when
such indices i, j and j0 can be chosen. This means that both of the sequences
a1; : : : ; aj�1 and aj+i�1; : : : ; al have no repetitions. As a1 = aj+i�1 and i < j,
one of the sequences must be the desired one of length at least l=3.

Suppose that the insertion loop runs for at least t iterations. By the above
there is a sequence of distinct keys b1; : : : ; bm, m � (2t � 1)=3, such that b1 is
the key to be inserted, and such that for some � 2 f0; 1g

h2��(b1) = h2��(b2); h1+�(b2) = h1+�(b3); h2��(b3) = h2��(b4); : : : (1)

Given b1 there are at most nm�1 sequences of m distinct keys. For any such
sequence and any � 2 f0; 1g, if the hash functions were chosen from a (c;m)-
universal family, the probability that (1) holds is bounded by c r�(m�1). Thus,
the probability that there is any sequence of length m satisfying (1) is bounded
by 2c (n=r)m�1 � 2c (1+�)�(2t�1)=3+1. Suppose we use a (c; 6 log1+� n)-universal
family, for some constant c (e.g., Siegel's family with constant time evaluation
[19]). Then the probability of more than 3 log1+� n iterations is O(1=n2). Thus,
we can set MaxLoop = 3 log1+� n with a negligible increase in the probability of
a rehash. When there is no rehash the expected number of iterations is at most

1 +

1X

t=2

2c (1 + �)�(2t�1)=3+1 = O(1 + 1=�) :

A rehash has no failed insertions with probability 1 � O(1=n). In this case,
the expected time per insertion is constant, so the expected time is O(n). As the
probability of having to start over with new hash functions is bounded away from
1, the total expected time for a rehash is O(n). This implies that the expected
time for insertion is constant if r � (1+ �)(n+1). Resizing of tables can be done
in amortized expected constant time per update by the usual doubling/halving
technique.

4 Experiments

To examine the practicality of Cuckoo Hashing we experimentally compare
it to three well known hashing methods, Chained Hashing (with separate
chaining), Linear Probing and Double Hashing, as described in [14, Sect.
6.4]. We also consider Two-Way Chaining [1], implemented in a cache-friendly
way, as recently suggested in [2].

4.1 Data Structure Design and Implementation

We consider positive 32 bit signed integer keys and use 0 as ?. The data struc-
tures are robust in that they correctly handle attempts to insert an element
already in the set, and attempts to delete an element not in the set. A slightly
faster implementation can be obtained if this is known not to occur.

Our focus is on achieving high performance dictionary operations with a
reasonable space usage. By the load factor of a dictionary we will understand
the size of the set relative to the memory used5. As seen in [14, Fig. 44] there
is not much to be gained in terms of average number of probes for the classic
schemes by going for load factor below, say, 1=2 or 1=3. As Cuckoo Hashing

only works when the size of each table is larger than the size of the set, we can
only perform a comparison for load factors less than 1=2. To allow for doubling
and halving of the table size, we allow the load factor to vary between 1=5
and 1=2, focusing especially on the �typical� load factor of 1=3. For Cuckoo
Hashing and Two-Way Chaining there is a chance that an insertion may fail,
causing a �forced rehash�. If the load factor is larger than a certain threshold,
somewhat arbitrarily set to 5=12, we use the opportunity to double the table
size. By our experiments this only slightly decreases the average load factor.

Apart from Chained Hashing, the schemes considered have in common the
fact that they have only been analyzed under randomness assumptions that are
currently, or inherently, unpractical to implement (O(logn)-wise independence
or n-wise independence). However, experience shows that rather simple and ef-
�cient hash function families yield performance close to that predicted under
stronger randomness assumptions. We use a function family from [6] with range
f0; 1gq for positive integer q. For every odd a, 0 < a < 2w, the family contains
the function ha(x) = (ax mod 2w) div 2w�q. Note that evaluation can be done
by a 32 bit multiplication and a shift. This choice of hash function restricts
us to consider hash tables whose sizes are powers of two. A random function
from the family (chosen using C's rand function) appears to work �ne with all
schemes except Cuckoo Hashing. For Cuckoo Hashing we found that us-
ing a (1; 3)-universal family resulted in fewer forced rehashes than when using a
(1; 2)-universal family. However, it turned out that the exclusive or of three inde-
pendently chosen functions from the family of [6] was faster and worked equally
well. We have no good explanation for this phenomenon. For all schemes, various
other families were tried, with a decrease in performance.

All methods have been implemented in C. We have striven to obtain the
fastest possible implementation of each scheme. Details di�ering from the refer-
ences and speci�c choices made are:

Chained Hashing. We store the �rst element of each linked list directly in the
hash table. This often saves one cache miss, and slightly decreases memory
usage, in the expected sense, as every non-empty chained list is one element
shorter. C's malloc and free functions were found to be a performance

5 For Chained Hashing, the notion of load factor traditionally disregards the space

used for chained lists, but we desire equal load factors to imply equal memory usage.

bottleneck, so a simple �free list� memory allocation scheme is used. Half of
the allocated memory is used for the hash table, and half for list elements.
If the data structure runs out of free list elements, its size is doubled.

Double Hashing. Deletions are handled by putting a �deleted� marker in the
cell of the deleted key. Queries skip over deleted cells, while insertions over-
write them. To prevent the tables from clogging up with deleted cells, re-
sulting in poor performance for unsuccessful lookups, all keys are rehashed
when 2=3 of the hash table is occupied by keys and �deleted� markers.

Two-Way Chaining. We allow four keys in each bucket. This is enough to
keep the probability of a forced rehash low for hundreds of thousands of
keys, by the results in [2]. For larger collections of keys one should allow
more keys in each bucket, resulting in general performance degradation.

Cuckoo Hashing. The architecture on which we experimented could not par-
allelize the two memory accesses in lookups. Therefore we only evaluate the
second hash function after the �rst memory lookup has shown unsuccessful.

Some experiments were done with variants of Cuckoo Hashing. In partic-
ular, we considered Asymmetric Cuckoo, in which the �rst table is twice the
size of the second one. This results in more keys residing in the �rst table, thus
giving a slightly better average performance for successful lookups. For example,
after a long sequence of alternate insertions and deletions at load factor 1=3, we
found that about 76% of the elements resided in the �rst table of Asymmet-
ric Cuckoo, as opposed to 63% for Cuckoo Hashing. There is no signi�cant
slowdown for other operations. We will describe the results for Asymmetric
Cuckoo when they di�er signi�cantly from those of Cuckoo Hashing.

4.2 Setup and Results

Our experiments were performed on a PC running Linux (kernel version 2.2)
with an 800 MHz Intel Pentium III processor, and 256 MB of memory (PC100
RAM). The processor has a 16 KB level 1 data cache and a 256 KB level 2
�advanced transfer� cache. Our results can be explained in terms of processor,
cache and memory speed in our machine, and are thus believed to have signif-
icance for other con�gurations. An advantage of using the Pentium processor
for timing experiments is its rdtsc instruction which can be used to measure
time in clock cycles. This gives access to very precise data on the behavior
of functions. Programs were compiled using the gcc compiler version 2.95.2,
using optimization �ags -O9 -DCPU=586 -march=i586 -fomit-frame-pointer

-finline-functions -fforce-mem -funroll-loops -fno-rtti. As mentioned
earlier, we use a global clock cycle counter to time operations. If the number
of clock cycles spent exceeds 5000, and there was no rehash, we conclude that
the call was interrupted, and disregard the result (it was empirically observed
that no operation ever took between 2000 and 5000 clock cycles). If a rehash is
made, we have no way of �ltering away time spent in interrupts. However, all
tests were made on a machine with no irrelevant user processes, so disturbances
should be minimal.

Our �rst test was designed to model the situation in which the size of the
dictionary is not changing too much. It considers a sequence of mixed opera-
tions generated at random. We constructed the test operation sequences from
a collection of high quality random bits publicly available on the Internet [15].
The sequences start by insertion of n distinct random keys, followed by 3n times
four operations: A random unsuccessful lookup, a random successful lookup, a
random deletion, and a random insertion. We timed the operations in the �equi-
librium�, where the number of elements is stable. For load factor 1=3 our results
appear in Fig. 1, which shows an average over 10 runs. As Linear Probing

was consistently faster than Double Hashing, we chose it as the sole open ad-
dressing scheme in the plots. Time for forced rehashes was added to the insertion
time. Results had a large variance for sets of size 212 to 216 � outside this range
the extreme values deviated from the average by less than about 7%.

As can be seen, the time for lookups is almost identical for all schemes as
long as the entire data structure resides in level 2 cache. After this the aver-
age number of random memory accesses (with the probability of a cache miss
approaching 1) shows up. Filling a cache line seems to take around 160 clock cy-
cles, with the memory location looked up arriving at the processor after about 80
clock cycles on average. This makes linear probing an average case winner, with
Cuckoo Hashing and Two-Way Chaining following about half a cache miss
behind. For insertion the number of random memory accesses again dominates
the picture for large sets, while the higher number of in-cache accesses and more
computation makes Cuckoo Hashing, and in particular Two-Way chaining,
relatively slow for small sets. The cost of forced rehashes sets in for Two-Way

Chaining for sets of more than a million elements, at which point better re-
sults may have been obtained by a larger bucket size. For deletion Chained

Hashing lags behind for large sets due to random memory accesses when free-
ing list elements, while the simplicity of Cuckoo Hashing makes it the fastest
scheme. We believe that the slight rise in time for the largest sets in the test
is due to saturation of the bus, as the machine runs out of memory and begins
swapping. It is interesting to note that all schemes would run much faster if the
random memory accesses could bypass the cache (using perhaps 20 clock cycles
per random memory access on our machine).

The second test concerns the cost of insertions in growing dictionaries and
deletions in shrinking dictionaries. Together with Fig. 1 this should give a fairly
complete picture of the performance of the data structures under general se-
quences of operations. The �rst operation sequence inserts n distinct random
keys, while the second one deletes them. The plot is shown in Fig. 2. For small
sets the time per operation seems unstable, and dominated by memory alloca-
tion overhead (if minimum table size 210 is used, the curves become monotone).
For sets of more than 212 elements the largest deviation from the averages over
10 runs was about 6%. Disregarding the constant minimum amount of memory
used by any dictionary, the average load factor during insertions was within 2%
of 1=3 for all schemes except Chained Hashing whose average load factor was

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Successful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

log n

C
lo

ck
 C

yc
le

s

Unsuccessful Lookup

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

400

450

log n

C
lo

ck
 C

yc
le

s

Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

50

100

150

200

250

300

350

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Fig. 1: The average time per operation in equilibrium for load factor 1=3.

8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

900

1000

log n

C
lo

ck
 C

yc
le

s

Insert

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

800

log n

C
lo

ck
 C

yc
le

s

Delete

Cuckoo
Two−Way Chaining
Chained Hashing
Linear Probing

Fig. 2: The average time per insertion/deletion in a growing/shrinking dictionary for

average load factor � 1=3.

about 0:31. During deletions all schemes had average load factor 0:28. Again the
winner is Linear Probing. We believe this is largely due to very fast rehashes.

Access to data in a dictionary is rarely random in practice. In particular,
the cache is more helpful than in the above random tests, for example due to
repeated lookups of the same key, and quick deletions. As a rule of thumb, the
time for such operations will be similar to the time when all of the data structure
is in cache. To perform actual tests of the dictionaries on more realistic data,
we chose a representative subset of the dictionary tests of the 5th DIMACS
implementation challenge [16]. The tests involving string keys were preprocessed
by hashing strings to 32 bit integers, preserving the access pattern to keys. Each
test was run six times � minimum and maximum average time per operation can
be found in Table 1, which also lists the average load factor. Linear probing is
again the fastest, but mostly only 20-30% faster than the Cuckoo schemes.

Joyce Eddington 3.11-Q-1 Smalltalk-2 3.2-Y-1

Linear 42 - 45 (.35) 26 - 27 (.40) 99 - 103 (.30) 68 - 72 (.29) 85 - 88 (.32)

Double 48 - 53 (.35) 32 - 35 (.40) 116 - 142 (.30) 77 - 79 (.29) 98 - 102 (.32)

Chained 49 - 52 (.31) 36 - 38 (.28) 113 - 121 (.30) 78 - 82 (.29) 90 - 93 (.31)

A.Cuckoo 47 - 50 (.33) 37 - 39 (.32) 166 - 168 (.29) 87 - 95 (.29) 95 - 96 (.32)

Cuckoo 57 - 63 (.35) 41 - 45 (.40) 139 - 143 (.30) 90 - 96 (.29) 104 - 108 (.32)

Two-Way 82 - 84 (.34) 51 - 53 (.40) 159 - 199 (.30) 111 - 113 (.29) 133 - 138 (.32)

Table 1: Average clock cycles per operation and load factors for the DIMACS tests.

We have seen that the number of

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Load Factor

C
ac

he
 M

is
se

s

Cuckoo
Two−Way Chaining
Chained Hashing
Double hashing

Fig. 3: The average number of random

memory accesses for insertion.

random memory accesses (i.e., cache
misses) is critical to the performance
of hashing schemes. Whereas there is
a very precise understanding of the
probe behavior of the classic schemes
(under suitable randomness assump-
tions), the analysis of the expected
time for insertions in Sect. 3.1 is rather
crude, establishing just a constant up-
per bound. Figure 3 shows experimen-
tally determined values for the aver-
age number of probes during inser-
tion for various schemes and load fac-
tors below 1=2. We disregard reads and writes to locations known to be in cache,
and the cost of rehashes. Measurements were made in �equilibrium� after 105 in-
sertions and deletions, using tables of size 215 and truly random hash function
values. It is believed that this curve is independent of the table size (up to van-
ishing terms). The curve for Linear Probing does not appear, as the number of
non-cached memory accesses depends on cache architecture (length of the cache
line), but it is typically very close to 1. It should be remarked that the highest
load factor for Two-Way Chaining is O(1= log logn).

5 Conclusion

We have presented a new dictionary with worst case constant lookup time. It is
very simple to implement, and has average case performance comparable to the
best previous dictionaries. Earlier schemes with worst case constant lookup time
were more complicated to implement and had considerably worse average case
performance. Several challenges remain. First of all an explicit practical hash
function family that is provably good for the scheme has yet to be found. Sec-
ondly, we lack a precise understanding of why the scheme exhibits low constant
factors. In particular, the curve of Fig. 3 and the fact that forced rehashes are
rare for load factors quite close to 1=2 need to be explained.

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM J.
Comput., 29(1):180�200 (electronic), 1999.

[2] Andrei Broder and Michael Mitzenmacher. Using multiple hash functions to improve IP
lookups. To appear in INFOCOM 2001.

[3] Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-minimum space.
SIAM J. Comput., 28(5):1627�1640 (electronic), 1999.

[4] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
System Sci., 18(2):143�154, 1979.

[5] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger. Polynomial hash
functions are reliable (extended abstract). In Proceedings of the 19th International Col-
loquium on Automata, Languages and Programming (ICALP '92), volume 623 of Lecture
Notes in Computer Science, pages 235�246. Springer-Verlag, Berlin, 1992.

[6] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A reliable
randomized algorithm for the closest-pair problem. Journal of Algorithms, 25(1):19�51, 1997.
doi:10.1006/jagm.1997.0873.

[7] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput., 23(4):738�761, 1994.

[8] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash func-
tions and dynamic hashing in real time. In Proceedings of the 17th International Colloquium
on Automata, Languages and Programming (ICALP '90), volume 443 of Lecture Notes in
Computer Science, pages 6�19. Springer-Verlag, Berlin, 1990.

[9] Arnold I. Dumey. Indexing for rapid random access memory systems. Computers and Au-
tomation, 5(12):6�9, 1956.

[10] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)

worst case access time. J. Assoc. Comput. Mach., 31(3):538�544, 1984.
[11] Gaston Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley Publishing

Co., London, 1984.
[12] Richard M. Karp, Michael Luby, and Friedhelm Meyer auf der Heide. E�cient PRAM simu-

lation on a distributed memory machine. Algorithmica, 16(4-5):517�542, 1996.
[13] Jyrki Katajainen and Michael Lykke. Experiments with universal hashing. Technical Report

DIKU Report 96/8, University of Copenhagen, 1996.
[14] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.

Addison-Wesley Publishing Co., Reading, Mass., second edition, 1998.
[15] George Marsaglia. The Marsaglia random number CDROM including the diehard battery of

tests of randomness. http://stat.fsu.edu/pub/diehard/.
[16] Catherine C. McGeoch. The �fth DIMACS challenge dictionaries.

http://cs.amherst.edu/�ccm/challenge5/dicto/.
[17] Kurt Mehlhorn and Stefan Näher. LEDA. A platform for combinatorial and geometric com-

puting. Cambridge University Press, Cambridge, 1999.
[18] Rasmus Pagh. On the Cell Probe Complexity of Membership and Perfect Hashing. In Pro-

ceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC '01). ACM
Press, New York, 2001. To appear.

[19] Alan Siegel. On universal classes of fast high performance hash functions, their time-space
tradeo�, and their applications. In Proceedings of the 30th Annual Symposium on Founda-
tions of Computer Science (FOCS '89), pages 20�25. IEEE Comput. Soc. Press, Los Alamitos,
CA, 1989.

[20] Craig Silverstein. A practical perfect hashing algorithm. Manuscript, 1998.
[21] M. Wenzel. Wörterbücher für ein beschränktes universum. Diplomarbeit, Fachbereich Infor-

matik, Universität des Saarlandes, 1992.

