
Rank-Balanced Trees

Bernhard Haeupler2, Siddhartha Sen1,4, and Robert E. Tarjan1,3,4

1 Princeton University, Princeton NJ 08544, {sssix, ret}@cs.princeton.edu
2 CSAIL, Massachusetts Institute of Technology, haeupler@mit.edu

3 HP Laboratories, Palo Alto CA 94304

Abstract. Since the invention of AVL trees in 1962, a wide variety of ways to
balance binary search trees have been proposed. Notable are red-black trees, in
which bottom-up rebalancing after an insertion or deletion takes O(1) amortized
time and O(1) rotations worst-case. But the design space of balanced trees has
not been fully explored. We introduce the rank-balanced tree, a relaxation of
AVL trees. Rank-balanced trees can be rebalanced bottom-up after an insertion or
deletion in O(1) amortized time and at most two rotations worst-case, in contrast
to red-black trees, which need up to three rotations per deletion. Rebalancing can
also be done top-down with fixed lookahead in O(1) amortized time. Using a
novel analysis that relies on an exponential potential function, we show that both
bottom-up and top-down rebalancing modify nodes exponentially infrequently in
their heights.

1 Introduction

Balanced search trees are fundamental and ubiquitous in computer science. Since the
invention of AVL trees [1] in 1962, many alternatives [2–5, 7, 10, 9, 11] have been pro-
posed, with the goal of simpler implementation or better performance or both. Simpler
implementations of balanced trees include Andersson’s implementation [2] of Bayer’s
binary B-trees [3] and Sedgewick’s related left-leaning red-black trees [4, 11]. These
data structures are asymmetric, which simplifies rebalancing by eliminating roughly
half the cases. Andersson further simplified the implementation by factoring rebalanc-
ing into two procedures, skew and split, and by adding a few other clever ideas. Stan-
dard red-black trees [7], on the other hand, have update algorithms with guaranteed
efficiency: rebalancing after an insertion or deletion takes O(1) rotations worst-case
and O(1) time amortized [13, 15]. As a result of these developments, one author [12, p.
177] has said, “AVL... trees are now passé.”

Yet the design and analysis of balanced trees is a rich area, not yet fully explored.
We continue the exploration. Our work yields both a new design and new analyses, and
suggests that AVL trees are anything but passé. Our new design is the rank-balanced
tree, a relaxation of AVL trees that has properties similar to those of red-black trees but
better in several ways. If no deletions occur, a rank-balanced tree is exactly an AVL

4 Research at Princeton University partially supported by NSF grants CCF-0830676 and CCF-
0832797 and US-Israel Binational Science Foundation grant 2006204. The information con-
tained herein does not necessarily reflect the opinion or policy of the federal government and
no official endorsement should be inferred.



2

tree; with deletions, its height is at most that of an AVL tree with the same number of
insertions but no deletions. Rank-balanced trees are a proper subset of red-black trees,
with a different balance rule and different rebalancing algorithms. Insertion and deletion
take at most two rotations in the worst case and O(1) amortized time; red-black trees
need three rotations in the worst case for a deletion. Insertion and deletion can be done
top-down with fixed look-ahead in O(1) amortized rebalancing time per update.

Our new analyses use an exponential potential function to measure the amortized
efficiency of operations on a balanced tree as a function of the heights of its nodes.
We use this method to show that rebalancing in rank-balanced trees affects nodes ex-
ponentially infrequently in their heights. This is true of both bottom-up and top-down
rebalancing.

This paper contains five sections in addition to this introduction. Section 2 gives
our tree terminology. Section 3 introduces rank-balanced trees and presents and an-
alyzes bottom-up rebalancing methods for insertion and deletion. Section 4 presents
and analyzes top-down rebalancing methods. Section 5 develops our method of using
an exponential potential function for amortized analysis, and with it shows that rebal-
ancing affects nodes with a frequency that is exponentially small in their heights. The
concluding Section 6 compares rank-balanced trees with red-black trees.

2 Tree Terminology

A binary tree is an ordered tree in which each node x has a left child left(x) and a right
child right(x), either or both of which may be missing. Missing nodes are also called
external; non-missing nodes are internal. Each node is the parent of its children. We de-
note the parent of a node y by p(y). The root is the unique node with no parent. A leaf is
a node with both children missing. The ancestor, respectively descendant relationship
is the reflexive, transitive closure of the parent, respectively child relationship. If node x
is an ancestor of node y and y 6= x, x is a proper ancestor of y and y is a proper descen-
dant of x. If x is a node, its left, respectively right subtree is the binary tree containing
all descendants of left(x), respectively right(x). The height h(x) of a node x is de-
fined recursively by h(x) = 0 if x is a leaf, h(x) = max{h(left(x)), h(right(x))}+1
otherwise. The height h of a tree is the height of its root.

We are most interested in binary trees as search trees. A binary search tree stores
a set of items, each of which has a key selected from a totally ordered universe. We
shall assume that each item has a distinct key; if not, we break ties by item identifier.
In an internal binary search tree, each node is an item and the items are arranged in
symmetric order: the key of a node x is greater, respectively less than those of all items
in its left, respectively right subtree. Given such a tree and a key, we can search for the
item having that key by comparing the key with that of the root. If they are equal, we
have found the desired item. If the search key is less, respectively greater than that of the
root, we search recursively in the left, respectively right subtree of the root. Each key
comparison is a step of the search; the current node is the one whose key is compared
with the search key. Eventually the search either locates the desired item or reaches a
missing node, the left or right child of the last node reached by the search in the tree.



3

To insert a new item into such a tree, we first do a search on its key. When the
search reaches a missing node, we replace this node with the new item. Deletion is a
little harder. First we find the item to be deleted by doing a search on its key. If neither
child of the item is missing, we find either the next item or the previous item, by walking
down through left, respectively right children of the right, respectively left child of the
item until reaching a node with a missing left, respectively right child. We swap the
item with the item found. Now the item to be deleted is either a leaf or has one missing
child. In the former case, we replace it by a missing node; in the latter case, we replace
it by its non-missing child. An access, insertion, or deletion takes O(h+ 1) time in the
worst case, if h is the tree height.

An alternative kind of search tree is an external binary search tree: the external
nodes are the items, the internal nodes contain keys but no items, and all the keys are
in symmetric order. Henceforth by a binary tree we mean an internal binary search tree,
with each node having pointers to its children. Our results extend to external binary
search trees and to other binary tree data structures. We denote by n the number of nodes
and by m and d, respectively, the number of insertions and the number of deletions in
a sequence of intermixed searches, insertions, and deletions that starts with an empty
tree. These numbers are related: d = m− n.

3 Rank-Balanced Trees

To make search, insertion, and deletion efficient, we limit the tree height by imposing
a rank rule on the tree. A ranked binary tree is a binary tree each of whose nodes x
has an integer rank r(x). We adopt the convention that missing nodes have rank minus
one. The rank of a ranked binary tree is the rank of its root. If x is a node with parent
p(x), the rank difference of x is r(p(x)) − r(x). We call a node an i-child if its rank
difference is i, and an i, j-node if its children have rank differences i and j; the latter
definition does not distinguish between left and right children and allows children to be
missing.

Our initial rank rule is that every node is a 1,1-node or a 1,2-node. This rule gives
exactly the AVL trees: each leaf is a 1,1-node of rank zero, the rank of each node
is its height, and the left and right subtrees of a node have heights that differ by at
most one. To encode ranks we store with each non-root node a bit indicating whether
it is a 1- or 2-child. This is Brown’s representation [5] of an AVL tree; in the original
representation [1], each node stores one of three states, indicating whether its left or
right subtree is higher or they have equal heights. The rank rule guarantees a logarithmic
height bound. Specifically, the minimum number of nodes nk in an AVL tree of rank
k satisfies the recurrence n0 = 1, n1 = 2, nk = 1 + nk−1 + nk−2 for k > 1. This
recurrence gives nk = Fk+3 − 1, where Fk is the kth Fibonacci number. Since Fk+2 ≥
φk [8], where φ = (1 +

√
2)/2 is the golden ratio, k ≤ logφ n ≤ 1.4404 lg n5.

AVL trees support search in O(log n) time, but an insertion or deletion may cause
a violation of the rank rule. To restore the rule, we change the ranks of certain nodes
and do rotations to rebalance the tree. A promotion, respectively demotion of a node x

5 We denote by lg the base-two logarithm.



4

increases, respectively decreases its rank by one. A rotation at a left child x with parent
y makes y the right child of x while preserving symmetric order; a rotation at a right
child is symmetric. (See Figure 1.) A rotation takes O(1) time.

y
rotate

C

x

rotate

A B

x
e right

A

y

e left

B C

Fig. 1. Right rotation at node x. Triangles denote subtrees. The inverse operation is a left rotation
at y.

In the case of an insertion, if the parent of the newly inserted node was previously a
leaf, the new node will have rank difference zero and hence violate the rank rule. Let q
be the newly added node, and let p be its parent if it exists, null if not. After adding q,
we rebalance the tree by repeating the following step until a case other than promotion
occurs (see Figure 2):

Insertion Rebalancing Step at p:

Stop: Node p is null or q is not a 0-child. Stop.

In the remaining cases q is a 0-child. Let s be the sibling of q, which may be missing.

Promotion: Node s is a 1-child. Promote p. This repairs the violation at q but may
create a new violation at p. Node p now has exactly one child of rank difference
one, namely q. Replace q by p. Let p be the parent of q if it exists, null if not.

In the remaining cases s is a 2-child. Assume q is the left child of p; the other possibility
is symmetric. Let t be the right child of q, which may be missing.

Rotation: Node t is a 2-child. Rotate at q and demote p. This repairs the violation
without creating a new one. Stop.

Double Rotation: Node t is a 1-child. Rotate at t twice, making q its left child and
p its right child. Promote t and demote p and q. This repairs the violation without
creating a new one. Stop.

During rebalancing there is at most one violation of the rank rule: node q may be a
0-child. Rebalancing walks up the path from the newly inserted node to the root, doing
zero or more promotion steps followed by one non-promotion step. The first step is
either a stop or a promotion. After one promotion step, node q is always a 1,2-node.
The rank of the insertion is the rank of p in the last step, just before the step occurs; if
p is null, the rank of the insertion is the rank of q in the last step (a stop).



5

p

sq

1,2

0 1

p

sq

0,1

1 2

p

sq

1,2

1 1

BA BA

p 1,2 q 1,2p

C

s0 2q

t1 2

q

A

11

t

p

s1 1

A B B C

p 1,2 t 1,2

p

sq

1,2

1 2

D

s0 2q

2 1t

1q

1

1p

s 1

A

B C

A B C D

Fig. 2. Rebalancing after an insertion. Numbers are rank differences. The first case is non-
terminating.

One can do a deletion in an AVL tree similarly [6] [8, pp. 465-468], but the re-
balancing may require a logarithmic number of rotations, rather than the one or two
needed for an insertion. To reduce this number, we relax the rank rule to allow non-
leaf 2,2-nodes as well as 1,1- and 1,2-nodes; leaves must still be 1,1-nodes. We call
the resulting trees rank-balanced trees or rb-trees (not to be confused with red-black
trees, which are equivalent to ranked binary trees with a different rank rule). One bit
per non-root node still suffices to encode the rank differences. An AVL tree is just an
rb-tree with no 2,2-nodes. The rank of an rb-tree is at least its height and at most twice
its height.

Theorem 1. The rank and hence the height of an rb-tree is at most 2 lg n.

Proof. The minimum number of nodes nk in an rb-tree of rank k satisfies the recurrence
n0 = 1, n1 = 2, nk = 1 + 2nk−2 for k ≥ 2. By induction nk ≥ 2dk/2e. ut

Insertion is the same in rb-trees as in AVL trees: insertion rebalancing steps do not
create 2,2-nodes (but can destroy them). A deletion in an rb-tree can violate the rank
rule by creating a node of rank one with two missing children or a node of rank two with
a (missing) 3-child. Let q be the node that replaces the deleted node (q can be a missing
node), and let p be its parent if it exists, null if not. We repair the violation by walking
up the path to the root, repeating the following step until a case other than demotion or
double demotion occurs (see Figure 3):

Deletion Rebalancing Step at p:



6

Stop: Node p is null, or q is not a 3-child and p is not a 2,2-node of rank 1. Stop.

In the remaining cases node q is a 2- or 3-child. Let s be the sibling of q, which may be
missing.

Demotion: Node s is a 2-child. Demote p. This repairs the violation at q but may
create a new violation at p. Replace q by p. Let p be the parent of q if it exists, null
if not.

In the remaining cases q is a 3-child and s is a non-missing 1-child. Assume q is the
right child of p; the other possibility is symmetric. Let t and u be the right and left
children of s, either or both of which can be missing.

Double Demotion: Nodes t and u are 2-children: Demote p and s. This repairs the
violation at q but may create a new violation at p. Replace q by p. Let p be the
parent of q if it exists, null if not.

Rotation: Node u is a 1-child. Rotate at s, promote s, and demote p. If t is missing,
demote p again. (In this case q is also missing, and p is now a leaf, whose rank must
be zero.) This repairs the violation without creating a new one. Stop.

Double Rotation: Node t is a 1-child and u is a 2-child. Rotate at t twice, making s
its left child and p its right child. Promote t twice, demote s, and demote p twice.
This repairs the violation without creating a new one. Stop.

During deletion rebalancing, there is at most one violation of the rank rule: p is a 2,2-
node of rank one or q is a 3-child; after the first step, q must be a 3-child. Rebalancing
walks up the path from the node that replaces the deleted node toward the root, doing
zero or more demotion and double demotion steps followed by a stop, a rotation, or a
double rotation. The rank of the deletion is the rank of p in the last step, just before the
step occurs; if p is null, the rank of the deletion is the rank of p in the next-to-last step,
just before the step occurs, or the rank of the deleted node if there is no next-to-last step
(the root is deleted).

Deletion in rb-trees is only slightly more complicated than insertion, with two non-
terminal cases instead of one. Deletion takes at most two rotations, the same as inser-
tion.

The rebalancing process needs access to the affected nodes on the search path. To
facilitate this, we can either add parent pointers to the tree or store the search path, either
in a separate stack or by reversing pointers along the path. A third method is to maintain
a trailing node during the search. This node is the topmost node that will be affected by
rebalancing. In the case of an insertion, it is either the root or the parent of the nearest
ancestor of the last node reached by the search that is a 2-child or a 1,2-node. In the
case of a deletion, it is either the root or the parent of the nearest ancestor of the current
node that is a 1-child or a 1,2-node whose 1-child is not a 2,2-node. In both cases, we
initialize the trailing node to be the root and update it as the search proceeds. Once the
search reaches the bottom of the tree, we do rebalancing steps (appropriately modified)
top-down, starting from the trailing node. This method needs only O(1) extra space, but
it incurs additional overhead during the search and during the rebalancing, to maintain



7

p 1,2 p 2,3p 1,2

B

q

A

s 2 2,3

B

q

A

s 1 1,2qs 2 1,2

p 1,2

1s

t2 C

q 3

2

p 2,3

1s

t1 C

q 2

1

p 1,2

A B A B

s 1,2p 1,2 p ,

1

u

s

t1 1,2 C

q 3

s

A

u

,

12

t

p

q1,2 2

p

qs

,

1 2

t 1,2p 1,2

A B B C

2

A

u

s

1

B

2

C

p

D

q 11,2 1,2

1s

D

q 3

1t

1 2 1 2A

u 2

A B C D

B C

1,2 1,2A

Fig. 3. Rebalancing after a deletion. Numbers are rank differences. The first two cases are non-
terminating. If q is a 2-child, the first case only applies if p is a leaf. The third case assumes t is
not a missing node; if it is, p is a leaf and is demoted.

the trailing node and to determine the next node on the search path, respectively. Its
big advantage is that it extends to top-down rebalancing with finite look-ahead, as we
discuss in the next section.

With any of these methods, a search, insertion, or deletion takes O(log n) time
worst-case. The number of rebalancing steps in an insertion or deletion is Θ(log n)
worst-case but O(1) amortized. To obtain this bound, we use a standard method of
amortized analysis [14]. We assign to each state of the data structure a non-negative
potential that is zero for an empty (initial) structure. We define the amortized cost of an
operation to be its actual cost plus the net increase in potential it causes. Then the sum
of the amortized costs is an upper bound on the sum of the actual costs for any sequence
of operations that begins with an empty structure.

To analyze rb-tree rebalancing, we define the potential of a tree to be the number
of non-leaf 1,1-nodes plus twice the number of 2,2-nodes. Each non-terminal insertion
rebalancing step decreases the potential by one by converting a 1,1-node into a 1,2-
node. Each non-terminal deletion rebalancing step except possibly the first decreases
the potential by at least one, by converting a 2,2-node into a 1,2- or 1,1-node. The first
deletion rebalancing step can increase the potential by one, by converting a 1,2-node



8

into a 1,1-node. A terminal insertion or deletion rebalancing step increases the potential
by at most two or three, respectively. This gives the following theorem:

Theorem 2. The total number of rebalancing steps is at most 3m+ 6d.

We conclude this section by deriving a bound on the height of rb-trees that is close
to that of AVL trees unless there are almost as many deletions as insertions.

Theorem 3. With bottom-up rebalancing, the height of an rb-tree is at most lgφm.

Proof. We define a count κ(x) for each node x, as follows: when x is first inserted, its
count is 1; when a node is deleted, its count is added to that of its parent if it has one.
The total count K(x) of a node x is the sum of the counts of its descendants. This is
equal to the sum of its count and the total counts of its children. The total count of the
root is at most m, the number of insertions. We prove by induction on the number of
rebalancing steps that if a node x has rank k, K(x) ≥ Fk+3 − 1, from which it follows
that m ≥ Fk+3 − 1 ≥ φk, giving the theorem.

We noted earlier that Fk+3 − 1 satisfies the recurrence x0 = 1, x1 = 2, xk =
1 + xk−1 + xk−2 for k > 1. This gives K(x) ≥ Fk+3 − 1 if k = 0; k = 1; or k > 1, x
is a 1,1- or 1,2-node, and the inequality holds for both children of x. This implies that
the inequality holds for a new leaf and after each rebalancing step of an insertion. In the
case of a promotion step, the children of the promoted node satisfy the inequality before
the promotion; since the promoted node becomes a 1,2-node, it satisfies the inequality
after the promotion. In the cases of rotation and double rotation, the children of the
affected nodes satisfy the inequality before the step; since none of the affected nodes
becomes a 2,2-node, they all satisfy the inequality after the step.

The inequality holds for the parent of a deleted node before rebalancing, since this
node inherits the count of the deleted node. It also holds after each rebalancing step
except possibly at a newly created 2,2-node. A 1,2-node that becomes a 2,2-node as a
result of the demotion of a child satisfies the inequality because it did before the demo-
tion. Node s in a rotation step and node t in a double rotation step satisfy the inequality
after the step because p satisfies the inequality before the step, and s, respectively t has
the same rank and count after the step as p did before it. The only other case of a new
2,2-node is node p in a rotation step if p is not a leaf. For p to become a 2,2-node, q
cannot be missing. Either q was demoted by the previous rebalancing step, or q is a leaf
whose parent was deleted. In the former case, q satisfies the inequality at rank k − 1
before its demotion, where k is the new rank of p. Since t, the other child of p, satisfies
the inequality at rank k − 2, p satisfies the inequality as well. In the latter case p has
new rank two and has total count at least four, so it satisfies the inequality. ut

4 Top-Down Rebalancing

The method of rebalancing using a trailing node described in Section 3 does the re-
balancing top-down rather than bottom-up. We can modify this method to use fixed
look-ahead. If the look-ahead is sufficiently large, the amortized number of rebalancing
steps per update remains O(1). The idea is to force a reset of the trailing node after



9

sufficiently many search steps. In an insertion, if the current node of the search is a
1,1-node whose parent is a 1,1-node, we can force the next search step to do a reset
by promoting the current node and rebalancing top-down from the trailing node. In a
deletion, if the current node is a 2,2 node or a 1,2-node whose 1-child is a 2,2-node, we
can force the next step to do a reset by demoting the current node in the former case or
the current node and its 1-child in the latter case, and rebalancing top-down from the
trailing node.

Forcing a reset as often as possible minimizes the look-ahead, but if we force a reset
less often we can guarantee O(1) amortized rebalancing steps per update. To demon-
strate this, we use the same potential function as in Section 3. In an insertion, if a search
step does not do a reset, every node along the search path from the grandchild of the
trailing node to the parent of the current node is a 1,1-node. Thus if we force a reset after
five search steps that do not do a reset (by promoting the fifth 1,1-node in a row), each
rebalancing to force a reset decreases the potential: the potential of the current node in-
creases by one, each of the four non-terminal rebalancing steps decreases the potential
by one, and the last rebalancing step increases it by at most two. A forced reset takes
O(1) time including rebalancing. If we scale this time to be at most one, the amortized
time of a forced reset is non-positive. In a deletion, if a search step does not do a reset,
every node along the search path from the grandchild of the trailing node to the parent
of the current node is a 2,2-node or a 1,2-node whose 1-child is a 2,2-node. If we force
a reset after five search steps that do not do a reset (by doing a demotion or a double
demotion at the fifth node in a row that is a 2,2-node or a 1,2-node whose 1-child is a
2,2-node), each rebalancing to force a reset decreases the potential: decreasing the rank
of the current node and possibly that of its child does not increase the potential, each of
the four non-terminal rebalancing steps decreases the potential by one, and the last step
increases it by at most three. In either an insertion or deletion, any rebalancing at the
bottom of the search path takes O(1) amortized time. This gives the following theorem:

Theorem 4. Top-down rebalancing with sufficiently large fixed look-ahead does O(1)
amortized rebalancing steps per insertion or deletion.

Theorem 4 remains true as long as every forced reset reduces the potential. One
disadvantage of top-down rebalancing is that the proof of Theorem 3 breaks down: the
induction does not apply to the 2,2-nodes created by forced resets during insertions.

5 Rank-Based Analysis

The amortized analysis of bottom-up rebalancing in Section 3 implies that most rebal-
ancing steps are low in the tree: in a sequence of m insertions and d deletions, there are
O((m+d)/k) insertions and deletions of rank k or greater. Something much stronger is
true, however: for some b > 1, there are only O((m+ d)/bk)) insertions and deletions
of rank k or greater. That is, the frequency of rebalancing steps decreases exponentially
with height. This is true (and easy to prove) for weight-balanced trees if one ignores
the need to update size information, but to our knowledge ours is the first such result
for trees that use some form of height balance, and it covers rank changes as well as



10

rotations. The result also holds for top-down rebalancing with sufficiently large fixed
look-ahead, for a value of b that depends on the look-ahead.

It is convenient to assign potential to 1,2-nodes as well as to 1,1- and 2,2-nodes. We
assign to a node of rank k a potential of Φk if it is a 1,1- or 2,2-node, or Φk−2 if it is a
1,2-node, where Φ is a non-decreasing function such that Φ0 = Φ−1 = 0, to be chosen
later. The potential of a tree is the sum of the potentials of its nodes.

With this choice of potential, the potential change of a sequence of non-terminal
rebalancing steps telescopes. Specifically, a non-terminal insertion rebalancing step at
a node of rank k decreases the potential by Φk − Φk−1 and promotes the node to rank
k + 1. Consecutive insertion rebalancing steps are at nodes that differ in rank by one.
Thus a sequence of non-terminal insertion rebalancing steps starting at a node of rank
0 and ending at a node of rank k decreases the potential by Φk − Φ−1 = Φk, since
Φ−1 = 0. A non-terminal deletion rebalancing step at a node of rank k decreases the
potential by Φk − Φk−3 if it is a demotion of a non-2,2-node and by Φk−1 + Φk−2 −
Φk−2 − Φk−3 = Φk−1 − Φk−3 if it is a double demotion. Since Φ is non-decreasing,
the potential decrease is at least Φk−1 − Φk−3 in either case. Consecutive deletion
rebalancing steps are at nodes that differ in rank by two. If the first rebalancing step is
a demotion of a 2,2-node of rank one, the step does not change the potential, because
the demoted node was a 1,2-node of rank one before the deletion. Thus a sequence of
non-terminal deletion rebalancing steps starting at a node of rank 1 or 2 and ending at a
node of rank k decreases the potential by at least Φk−1 − Φ0 = Φk−1.

We can compute the total potential change caused by an insertion or deletion by
combining the effect of the sequence of non-terminal rebalancing steps with that of the
initialization and the terminal step. In an insertion, the initialization consists of adding
a new leaf, which has potential Φ0 = 0. Let k be the rank of the insertion. Consider the
last rebalancing step. (See Figure 2.) Suppose this step is a stop. If p is null, then either
the insertion promotes the root and decreases the potential by at least Φk, or k = 0, the
insertion is into an empty tree, and it does not change the potential. If p is not null but
becomes a 1,2-node, the insertion decreases the potential by at least Φk; if p is not null
but becomes a 1,1-node, the insertion increases the potential by at most Φk − 2Φk−2.
Suppose the last step is a rotation. Then the insertion increases the potential by at most
Φk − 2Φk−2. Finally, suppose the last step is a double rotation. Then the insertion
increases the potential by at most Φk − 2Φk−2: node t is a 1,1- or 1,2-node before the
last step. In all cases the potential increase is at most max{−Φk,Φk − 2Φk−2}.

In a deletion, the initialization consists of deleting a leaf, or deleting a node with
one child and replacing it by its child. The deleted node has potential zero before it
is deleted. Let k be the rank of the deletion. Consider the last rebalancing step. (See
Figure 3.) Suppose this step is a stop. If p is null, then either the deletion demotes the
root and decreases the potential by at least Φk−1, or k ≤ 1 and the deletion deletes
the root and does not change the potential. If p is not null but becomes a 1,2-node, the
deletion decreases the potential by at least Φk; if p is not null but becomes a 2,2-node,
the deletion increases the potential by at most Φk − 2Φk−2. Suppose the last step is a
rotation. Then the deletion increases the potential by at most Φk−3−Φk−1−Φk−3 ≤ 0
if node s is a 1,1-node, by at most Φk−1 − 2Φk−3 if s is a 1,2-node of rank at least
two, and by Φ2 if s is a 1,2-node of rank one; in the third case, node p is a leaf after



11

the rotation and is demoted. Finally, suppose the last step is a double rotation. Then the
deletion increases the potential by at most Φk − 2Φk−3 if node u is a 1,1- or 1,2-node
before the last step or by at most Φk + 2Φk−4 − 2Φk−2 − 2Φk−3 ≤ Φk − 2Φk−2 if
node u is a 2,2-child before the rotation. In all cases the potential increase is at most
max{−Φk−1,Φk − 2Φk−3}.

For i ≥ 1, let Φi = bi, where b = 21/3. An insertion or deletion of rank at most 3
increases the potential by O(1). Since b2−2 < 0 and b3−2 = 0, an insertion or deletion
of rank 4 or more does not increase the potential. We prove that insertions and deletions
of a given rank occur exponentially infrequently by stopping the growth of the potential
at a corresponding rank. Specifically, for a fixed rank k ≥ 4 and arbitrary i ≥ 1, let
Φi = bmin{i,k−3}. Then an insertion or deletion of rank at most 3 still increases the
potential by O(1), and an insertion or deletion of rank greater than 3 and less than k
still does not increase the potential, but an insertion or deletion of rank k or greater
decreases the potential by at least bk−3. This gives the following theorem:

Theorem 5. In a sequence of m insertions and d deletions with bottom-up rebalancing
in an initially empty rank-balanced tree, there are O((m + d)/2k/3) insertions and
deletions of rank k or more, for any k.

The base of the exponent in Theorem 5 can be increased to 1.32+ by separately
analyzing insertions and deletions (proof omitted). A result similar to Theorem 5 holds
for top-down rebalancing (proof omitted):

Theorem 6. A sequence of m insertions and d deletions with top-down rebalancing
in an initially empty tree does O((m + d)/bk) rebalancing steps at nodes of rank k
if forced resets occur after six search steps in an insertion, four in a deletion, where
b = 1.13+. The base b can be increased arbitrarily close to 21/3 by increasing the fixed
lookahead.

It is possible to improve the base in both Theorem 5 and Theorem 6 at the cost
of making deletion rebalancing a little more complicated, specifically by changing the
double rotation step of deletion rebalancing to promote p if it is a 1,1-node after the step,
or promote s if it but not p is a 1,1-node after the step. With this change Theorem 5 holds
for a base of 21/2, and Theorem 6 holds for a base of b = 1.17+ even if deletion does
a forced reset after only three search steps. By increasing the fixed lookahead, the base
in Theorem 6 can be increased arbitrarily close to 21/2. Unfortunately this change in
deletion rebalancing invalidates the proof of Theorem 3.

6 Rank-Balanced Trees versus Red-Black Trees

Rank-balanced trees have properties similar to those of red-black trees but better in sev-
eral respects. Rank-balanced trees are a proper subset of red-black trees (proof omitted):

Theorem 7. The nodes of an rb-tree can be assigned colors to make it a red-black tree.
The nodes of a red-black tree can be assigned ranks to make it an rb-tree if and only if
it does not contain a node x such that there is a path of all black nodes from x to a leaf
and another path of nodes alternating in color from x to a red leaf.



12

The height bound for AVL trees holds for rb-trees as long as there are no deletions,
and holds in weakened form even with deletions (Theorem 3) if rebalancing is bottom-
up. On the other hand, the height of a red-black tree can be 2 lg n−O(1) even without
deletions. Red-black trees need up to three rotations per deletion, rb-trees only two.

We conclude that the differences between rb-trees and red-black trees favor rb-trees,
especially the height bound of Theorem 3. Guibas and Sedgewick, in their classic paper
on red-black trees [7], considered in passing the alternative of allowing rank differences
1 and 2 instead of 0 and 1, but said, “We have chosen to use zero weight links because
the algorithms appear somewhat simpler.” Our results demonstrate the advantages of
the alternative. We think that rank-balanced trees will prove efficient in practice, and
we intend to do experiments to investigate this hypothesis.

References

1. G. M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organization of information.
Sov. Math. Dokl., 3:1259–1262, 1962.

2. A. Andersson. Balanced search trees made simple. In WADS, volume 709, pages 60–71,
1993.

3. R. Bayer. Binary B-trees for virtual memory. In SIGFIDET, pages 219–235, 1971.
4. R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms. Acta Inf.,

1:290–306, 1972.
5. M. R. Brown. A storage scheme for height-balanced trees. Inf. Proc. Lett., pages 231–232,

1978.
6. C. C. Foster. A study of avl trees. Technical Report GER-12158, Goodyear Aerospace Corp.,

1965.
7. L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In FOCS,

pages 8–21, 1978.
8. D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-

Wesley, 1973.
9. J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM J. on

Comput., pages 33–43, 1973.
10. H. J. Olivié. A new class of balanced search trees: Half balanced binary search trees. ITA,

16(1):51–71, 1982.
11. R. Sedgewick. Left-leaning red-black trees. www.cs.princeton.edu/ rs/talks/LLRB/LLRB.pdf.
12. S. S. Skiena. The Algorithm Design Manual. Springer-Verlag, 1998.
13. R. E. Tarjan. Updating a balanced search tree in O(1) rotations. Inf. Proc. Lett., 16(5):253–

257, 1983.
14. R. E. Tarjan. Amortized computational complexity. SIAM J. Algebraic and Disc. Methods,

6:306–318, 1985.
15. R. E. Tarjan. Efficient top-down updating of red-black trees. Technical Report TR-006-85,

Department of Computer Science, Princeton University, 1985.


