
Matching and Recognition in 3D

Based on slides by Tom Funkhouser and Misha Kazhdan



From 2D to 3D: Some Things Easier

No occlusion (but sometimes missing data instead)

Segmenting objects often simpler



From 2D to 3D: Many Things Harder

Rigid transform has 6 degrees of freedom vs. 3
• Brute-force algorithms much less practical

Rotations do not commute
• Difficult to parameterize, search over

No natural parameterization for surfaces in 3D
• Hard to do FFT, convolution, PCA
• Exception: range images



Shape Matching Challenge

Need shape descriptor & matching method that is:
• Concise to store
• Quick to compute
• Efficient to match
• Discriminating
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Shape Matching Challenge

Need shape descriptor & matching method that is:
• Concise to store
• Quick to compute
• Efficient to match
• Discriminating
 Invariant to transformations
• Invariant to deformations
• Insensitive to noise
• Insensitive to topology
• Robust to degeneracies

Different Transformations
(translation, scale, rotation, mirror)
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Shape Matching Challenge

Need shape descriptor & matching method that is:
• Concise to store
• Quick to compute
• Efficient to match
• Discriminating
• Invariant to transformations
• Invariant to deformations
• Insensitive to noise
• Insensitive to topology
Robust to degeneracies

Images courtesy of 
Utah & De Espona
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Images courtesy of 
Amenta & OsadaTaxonomy of 3D Matching Methods

Structural representations
• Skeletons
• Part-based methods
• Feature-based methods

Statistical representations
• Attribute feature vectors
• Volumetric methods
• Surface-based methods
• View-based methods



Features on Surfaces

Can construct edge and corner detectors

Analogue of 1st derivative: surface normal

Analogue of 2nd derivative: curvature
• Curvature at each point in each direction
• Minimum and maximum: “principal curvatures”
• Can threshold or do nonmaximum suppression



Image courtesy of 
Mao ChenTaxonomy of 3D Matching Methods

Structural representations
• Skeletons
• Part-based methods
• Feature-based methods

Statistical representations
• Attribute feature vectors
• Volumetric methods
• Surface-based methods
• View-based methods
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Example

Shape distributions
• Shape representation: probability distributions
• Distance measure: difference between distributions
• Evaluation method: classification performance



Shape Distributions

Key idea: map 3D surfaces to common parameterization 
by randomly sampling shape function
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Which Shape Function?

Implementation: simple shape functions based on 
angles, distances, areas, and volumes

A3
(angle)

D1
(distance)

[Ankerst 99]

D2
(distance)

D3
(area)

θ

θ

D4
(volume)



D2 Shape Distribution

Properties
• Concise to store?
• Quick to compute?
• Invariant to transforms?
• Efficient to match?
• Insensitive to noise?
• Insensitive to topology?
• Robust to degeneracies?
• Invariant to deformations?
• Discriminating?



D2 Shape Distribution

Properties
Concise to store?
Quick to compute?
• Invariant to transforms?
• Efficient to match?
• Insensitive to noise?
• Insensitive to topology?
• Robust to degeneracies?
• Invariant to deformations?
• Discriminating?

512 bytes (64 values)
0.5 seconds (106 samples)
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D2 Shape Distribution

Properties
Concise to store
Quick to compute
 Invariant to transforms?
• Efficient to match?
• Insensitive to noise?
• Insensitive to topology?
• Robust to degeneracies?
• Invariant to deformations?
• Discriminating?

Translation
Rotation
Mirror{

Normalized Means

Scale (w/ normalization)

Skateboard Porsche
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D2 Shape Distribution

Properties
Concise to store
Quick to compute
 Invariant to transforms
Efficient to match
 Insensitive to noise?
 Insensitive to topology?
Robust to degeneracies?
• Invariant to deformations?
• Discriminating?

1% Noise



D2 Shape Distribution

Properties
Concise to store
Quick to compute
 Invariant to transforms
Efficient to match
 Insensitive to noise
 Insensitive to topology
Robust to degeneracies
 Invariant to deformations?
• Discriminating?

Ellipsoids with 
Different Eccentricities



D2 Shape Distribution

Properties
Concise to store
Quick to compute
 Invariant to transforms
Efficient to match
 Insensitive to noise
 Insensitive to topology
Robust to degeneracies

Invariant to deformations
Discriminating?

Line Segment Circle

Cylinder Cube

Sphere Two Spheres



D2 Shape Distribution Results

Question
• How discriminating are

D2 shape distributions?

Test database
• 133 polygonal models
• 25 classes

4 Mugs

6 Cars

3 Boats



D2 Shape Distribution Results

D2 distributions are different across classes

D2 shape distributions for 15 classes of objects



D2 Shape Distribution Results

D2 shape distributions for 15 classes of objects
Line Segment

D2 distributions reveal gross shape of object



D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2 shape distributions for 15 classes of objects

Circle



D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2 shape distributions for 15 classes of objects
Cylinder



D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2 shape distributions for 15 classes of objects
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D2 Shape Distribution Results

D2 distributions reveal gross shape of object

D2 shape distributions for 15 classes of objects
Two Spheres



D2 Shape Distribution Results

But … are D2 distributions discriminating?

D2 shape distributions for 15 classes of objects



D2 Shape Distribution Results

D2 distributions for 5 tanks (gray) and 6 cars (black)
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Evaluation Methods

For each model (the query):
• Compute match score for all models
• Rank matches from best to worst
• Measure how often models in same class as query 

appear near top of ranked list
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Evaluation Methods

Precision-recall curves
• Precision = retrieved_in_class / total_retrieved
• Recall = retrieved_in_class / total_in_class
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Evaluation Methods

Precision-recall curve example
• Precision = 0 / 0
• Recall = 0 / 5
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Evaluation Methods

Precision-recall curve example
• Precision = 1 / 1
• Recall = 1 / 5
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Evaluation Methods

Precision-recall curve example
• Precision = 2 / 3
• Recall = 2 / 5
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Query
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Precision-recall curve example
• Precision = 3 / 5
• Recall = 3 / 5
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Precision-recall curve example
• Precision = 4 / 7
• Recall = 4 / 5
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Precision-recall curve example
• Precision = 5 / 9
• Recall = 5 / 5
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Evaluation Methods
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Extended Gaussian Image

Represent a model by a spherical function by binning 
surface normals

Model Angular Bins EGI

[Horn, 1984]



Extended Gaussian Image

Properties:
• Invertible for convex shapes
• Can be defined for most models
• 2D array of information

[Horn, 1984]
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Extended Gaussian Image

Properties:
• Invertible for convex shapes
• Can be defined for most models
• 2D array of information

Limitations:
• In general, shapes are not convex
• Normals are sensitive to noise

3D Model EGI

[Horn, 1984]



Extended Gaussian Image

Properties:
• Invertible for convex shapes
• Can be defined for most models
• 2D array of information

Limitations:
• In general, shapes are not convex
• Normals are sensitive to noise

Initial Model Noisy Model

[Horn, 1984]



Retrieval Results

Princeton Shape Benchmark

51 potted plants 33 faces 15 desk chairs 22 dining chairs

100 humans 28 biplanes 14 flying birds 11 ships



Retrieval Results
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Shape Histograms

Shape descriptor stores a histogram of how much 
surface resides at different bins in space

Model Shape Histogram 
(Sectors + Shells)

[Ankerst et al., 1999]



Boundary Voxel Representation

Represent a model as the (anti-aliased) rasterization of 
its surface into a regular grid:
• A voxel has value 1 (or area of intersection) if it 

intersects the boundary
• A voxel has value 0 if it doesn’t intersect

Model
Voxel Grid



Boundary Voxel Representation

Properties:
• Can be defined for any model
• Invertible
• 3D array of information
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Boundary Voxel Representation

Properties:
• Can be defined for any model
• Invertible
• 3D array of information

Limitations:
• Difficult to match

If the resolution is too high:
most voxels miss

If the resolution is too low:
representation is too coarse

Intersection



Retrieval Results
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Histogram Representations

Challenge:
• If shape properties are mapped to nearby bins, they will not be 

compared

Solutions:
• Match across adjacent bins:

Earth Mover’s Distance
• Low-pass filter:

Convolution with a Gaussian



Earth Mover’s distance

Match by computing the minimal amount of work 
needed to transform one distribution into the other.

Computing the distance:
• For 1D histograms can use the CDF to compare efficiently
• In general, need to solve the transportation problem 

which is inefficient for large numbers of bins

[Rubner et al. 1998]



Convolving with a Gaussian

The value at a point is obtained by summing Gaussians 
distributed over the surface of the model.
 Distributes the surface into adjacent bins
 Blurs the model, loses high frequency information

Surface Gaussian Gaussian 
convolved surface



Gaussian EDT

The value at a point is obtained by summing the 
Gaussian of the closest point on the model surface.
 Distributes the surface into adjacent bins
 Maintains high-frequency information

Surface Gaussian Gaussian EDT

max

[Kazhdan et al., 2003]



Gaussian EDT

Properties:
• Can be defined for any model
• Invertible
• 3D array of information
• Difference measures proximity between surfaces 
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Retrieval Results
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Handling Transformations
Key difficulty:

locating objects under any rigid-body transformation

Approaches:
• Exhaustive search: try all possibilities
• Invariance: use descriptors that do not change under 

transformations
• Normalization: align objects to canonical coordinate frame



Exhaustive Search

Search for the best aligning transformation:
• Compare at all alignments
• Match at the alignment for which models are closest

Exhaustive search for optimal rotation



Exhaustive Search

Search for the best aligning transformation:
• Compare at all alignments
• Match at the alignment for which models are closest



Exhaustive Search

Search for the best aligning transformation:
• Use signal processing for efficient correlation
• Represent model at many different transformations

Search for the best aligning transformation:
• Gives the correct answer
• Is hard to do efficiently



Invariance

Represent a model with information that is independent 
of the transformation
• Power spectrum representation

Fourier Transform for translation and 2D rotations
Spherical Harmonic Transform for 3D rotations

Frequency
Frequency

Circular Power Spectrum Spherical Power Spectrum



Circular Power Spectrum

Circular
Function



Circular Power Spectrum

+ + += + …

Cosine/Sine Decomposition

Circular
Function
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+ + + + …+

Circular Power Spectrum

= + + +

Constant 1st Order 2nd Order 3rd Order

+ …

Frequency Decomposition

= Amplitudes invariant
to rotation

Circular
Function



Spherical Power Spectrum

Represent each spherical function as a sum 
of harmonic frequencies (orders)

Harmonic Decomposition

+ += +



Spherical Power Spectrum

Represent each spherical function as a sum 
of harmonic frequencies (orders)

+ +=

+ + +

Constant 1st Order 2nd Order 3rd Order

+



Spherical Power Spectrum

Store “how much” (L2-norm) of the shape resides in 
each frequency to get a rotation invariant 
representation

+ + +

Constant 1st Order 2nd Order 3rd Order

=



Invariant to transforms?

 Frequency subspaces are fixed by rotations:
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Invariant to transforms?

 Frequency subspaces are fixed by rotations:



Power Spectrum

Translation-invariance:
• Represent the model in a Cartesian coordinate system
• Compute the 3D Fourier transform
• Store the amplitudes of the frequency components
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Power Spectrum

Single axis rotation-invariance:
• Represent the model in a cylindrical coordinate system
• Compute the Fourier transform in the angular direction
• Store the amplitudes of the frequency components

∑=
k

ki
k ehrfhrf )(),(),,( θθ

{ }
kk hrf ),(

Cylindrical Coordinates

Rotation Invariant 
Representation

h

r

η



Power Spectrum

Full rotation-invariance:
• Represent the model in a spherical coordinate system
• Compute the spherical harmonic transform 
• Store the amplitudes of the frequency components
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Power Spectrum

Power spectrum representations
• Are invariant to transformations
• Give a lower bound for the best match
• Tend to discard too much information

Translation invariant:            n3 data -> n3/2 data
Single-axis rotation invariant: n3 data -> n3/2 data
Full rotation invariant:           n3 data -> n2 data



Normalization

Place a model into a canonical coordinate frame by 
normalizing for:
• translation
• scale
• rotation

Translation

Scale

Rotation



Alignment of Point Sets

Given two point sets P={p1,…,pn} and Q={q1,…,qn}, 
what is the transformation T minimizing the sum of 
squared distances:

[Horn et al., 1988]
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Alignment of Point Sets

Translation
• Align the models so that their center of mass is at the 

origin.

[Horn et al., 1988]
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Alignment of Point Sets

Scale
• Align the models so that their mean variance is 1.

[Horn et al., 1988]
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Alignment of Point Sets

Rotation
• Factor the cross covariance matrix:

[Horn et al., 1988]
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Normalization
Place a model into a canonical coordinate frame:
• Translation: center of mass

Can be done on a per-model basis
• Scale: mean variance

Can be done on a per-model basis
• Rotation: factoring cross covariance matrix

Need to know the correspondences between models
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Rotation

Challenge:
• We want to normalize for rotation on a per-model basis

Solution:
• Align the model so that the principal axes align with the 

coordinate axes

PCA 
Alignment



Rotation

Challenge:
• We want to normalize for rotation on a per-model basis

Solution:
• Align the model so that the principal axes align with the 

coordinate axes

PCA 
Alignment

Directions of the axes are 
ambiguous



Normalization (PCA)

PCA defines a coordinate frame up to reflection in the 
coordinate axes.
• Make descriptor invariant to the eight reflections

Reflections fix the cosine term
Reflections multiply the sine term by -1

zx

y
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Representation



Problem with PCA-Based Alignment

If singular values are close, axes unstable



Retrieval Results (Rotation)

Method Floats

Exhaustive Search 8192

PCA + Flip Invariance 8192

PCA 8192

Cylindrical PS 4352

Spherical PS 512

Time:
Method Secs.

Exhaustive Search 20.59

PCA + Flip Invariance .67

PCA .67

Cylindrical PS .32

Spherical PS .03

Size:

0%

50%

100%

0% 50% 100%

Exhaustive Search
PCA + Flip Invariance
Cylindrical Power Spectrum
Spherical Power Spectrum
PCA

Recall

Gaussian EDT
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