Probability and Statistics in Vision, Gaussian Mixture Models and EM
Probability

• Objects not all the same
 – Many possible shapes for people, cars, …
 – Skin has different colors

• Measurements not all the same
 – Noise

• But some are more probable than others
 – Green skin not likely
Probability and Statistics

• Approach: probability distribution of expected objects, expected observations

• Perform mid- to high-level vision tasks by finding most likely model consistent with actual observations

• Often don’t know probability distributions – learn them from statistics of training data
Concrete Example – Skin Color

• Suppose you want to find pixels with the color of skin

• Step 1: learn likely distribution of skin colors from (possibly hand-labeled) training data
Conditional Probability

- This is the probability of observing a given color given that the pixel is skin
- Conditional probability $p(\text{color} \mid \text{skin})$
Skin Color Identification

• Step 2: given a new image, want to find whether each pixel corresponds to skin

• Maximum likelihood estimation: pixel is skin iff $p(\text{skin} | \text{color}) > p(\text{not skin} | \text{color})$

• But this requires knowing $p(\text{skin} | \text{color})$ and we only have $p(\text{color} | \text{skin})$
Bayes’s Rule

• “Inverting” a conditional probability:
 \[p(B | A) = p(A | B) \cdot p(B) / p(A) \]

• Therefore,
 \[p(\text{skin} | \text{color}) = p(\text{color} | \text{skin}) \cdot p(\text{skin}) / p(\text{color}) \]

• \(p(\text{skin}) \) is the **prior** – knowledge of the domain

• \(p(\text{skin} | \text{color}) \) is the **posterior** – what we want

• \(p(\text{color}) \) is a **normalization term**
Priors

• \(p(\text{skin}) = \text{prior} \)
 – Estimate from training data
 – Tunes “sensitivity” of skin detector
 – Can incorporate even more information:
 e.g. are skin pixels more likely to be found in certain regions of the image?

• With more than 1 class, priors encode what classes are more likely
Skin Detection Results
Skin Color-Based Face Tracking
Learning Probability Distributions

- Where do probability distributions come from?
- Learn them from observed data
Gaussian Model

- Simplest model for probability distribution: Gaussian

Symmetric: \[p(\tilde{x}) = e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

Asymmetric: \[p(\tilde{x}) = e^{-\frac{(x-\mu)^T \Sigma^{-1} (x-\mu)}{2}} \]
Maximum Likelihood

• Given observations $x_1 \ldots x_n$, want to find model m that maximizes likelihood

\[p(x_1 \ldots x_n \mid m) = \prod_{i=1}^{n} p(x_i \mid m) \]

• Can rewrite as

\[-\log L(m) = \sum_{i=1}^{n} -\log p(x_i \mid m) \]
Maximum Likelihood

- If m is a Gaussian, this turns into

\[- \log L(m) = \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\]

and minimizing it (hence maximizing likelihood) can be done in closed form

\[
\mu = \frac{1}{n} \sum_{i=1}^{n} x_i
\]

\[
\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)(x_i - \mu)^T
\]
Mixture Models

• Although single-class models are useful, the real fun is in multiple-class models

• \(p(\text{observation}) = \sum \pi_{\text{class}} p_{\text{class}}(\text{observation}) \)

• Interpretation: the object has some probability \(\pi_{\text{class}} \) of belonging to each class

• Probability of a measurement is a linear combination of models for different classes
Learning Mixture Models

• No closed form solution

• k-means: Iterative approach
 – Start with k models in mixture
 – Assign each observation to closest model
 – Recompute maximum likelihood parameters for each model
k-means
k-means
k-means
k-means
\(k \)-means
k-means
k-means
k-means
k-means

• This process always converges (to something)
 – Not necessarily globally-best assignment

• Informal proof: look at energy minimization

\[E = \sum_{i \in \text{points}} \sum_{j \in \text{clusters}} \| x_i - \bar{x}_j \|^2 \cdot \text{assigned}_{ij} \]

 – Reclassifying points reduces (or maintains) energy
 – Recomputing centers reduces (or maintains) energy
 – Can’t reduce energy forever
“Probabilistic k-means”

- Use Gaussian probabilities to assign point ↔ cluster weights

\[
\pi_{p,j} = \frac{G_j(p)}{\sum_{j'} G_{j'}(p)}
\]
“Probabilistic k-means”

- Use $\pi_{p,j}$ to compute weighted average and covariance for each cluster

$$\mu_j = \frac{\sum p \pi_{p,j}}{\sum \pi_{p,j}}$$

$$\Sigma_j = \frac{\sum (p - \mu_j)(p - \mu_j)^T \pi_{p,j}}{\sum \pi_{p,j}}$$
Expectation Maximization

• This is a special case of the expectation maximization algorithm

• General case: “missing data” framework
 – Have known data (feature vectors) and unknown data (assignment of points to clusters)
 – E step: use known data and current estimate of model to estimate unknown
 – M step: use current estimate of complete data to solve for optimal model
EM and Robustness

• One example of using generalized EM framework: robustness

• Make one category correspond to “outliers”
 – Use noise model if known
 – If not, assume e.g. uniform noise
 – Do not update parameters in M step
Example: Using EM to Fit to Lines

Good data
Example: Using EM to Fit to Lines

With outlier
Example: Using EM to Fit to Lines

EM fit

Weights of “line” (vs. “noise”)
Example: Using EM to Fit to Lines

EM fit – bad local minimum

Weights of “line” (vs. “noise”)
Example: Using EM to Fit to Lines

Fitting to multiple lines
Example: Using EM to Fit to Lines

Local minima
Weighted Observations

- In some applications, the datapoints are pixels
 - Weighted by intensity

\[
\tilde{\mu}_j = \frac{\sum w_p \pi_{p,j} \tilde{x}_p}{\sum w_p \pi_{p,j}}
\]

\[
\Sigma_j = \frac{\sum w_p \pi_{p,j} (\tilde{x}_p - \tilde{\mu}_j)(\tilde{x}_p - \tilde{\mu}_j)^T}{\sum w_p \pi_{p,j}}
\]
EM Demo
Eliminating Local Minima

- Re-run with multiple starting conditions
- Evaluate results based on
 - Number of points assigned to each (non-noise) group
 - Variance of each group
 - How many starting positions converge to each local maximum
- With many starting positions, can accommodate many outliers
Selecting Number of Clusters

- Re-run with different numbers of clusters, look at total error
- Will often see “knee” in the curve

Noise in data vs. error in model
Overfitting

- Why not use many clusters, get low error?
- Complex models bad at filtering noise (with k clusters can fit k data points exactly)
- Complex models have less predictive power
- Occam’s razor: *entia non multiplicanda sunt praeter necessitatem* (“Things should not be multiplied beyond necessity”)
Training / Test Data

• One way to see if you have overfitting problems:
 – Divide your data into two sets
 – Use the first set (“training set”) to train model
 – Compute error on the second set of data (“test set”)
 – If error not comparable to training, have overfitting