
Probability and Statistics in Vision,
Gaussian Mixture Models and EM



Probability

• Objects not all the same
– Many possible shapes for people, cars, …

– Skin has different colors

• Measurements not all the same
– Noise

• But some are more probable than others
– Green skin not likely



Probability and Statistics

• Approach: probability distribution of expected 
objects, expected observations

• Perform mid- to high-level vision tasks by 
finding most likely model consistent with actual 
observations

• Often don’t know probability distributions –
learn them from statistics of training data



Concrete Example – Skin Color

• Suppose you want to find pixels with the
color of skin

• Step 1: learn likely distribution of skin colors 
from (possibly hand-labeled) training data
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Conditional Probability

• This is the probability of observing a given color 
given that the pixel is skin

• Conditional probability p(color|skin)



Skin Color Identification

• Step 2: given a new image, want to find 
whether each pixel corresponds to skin

• Maximum likelihood estimation: pixel is skin iff 
p(skin|color) > p(not skin|color)

• But this requires knowing p(skin|color) and we 
only have p(color|skin)



Bayes’s Rule

• “Inverting” a conditional probability:
p(B|A) = p(A|B) ⋅ p(B) / p(A)

• Therefore,
p(skin|color) = p(color|skin) ⋅ p(skin) / p(color)

• p(skin) is the prior – knowledge of the domain

• p(skin|color) is the posterior – what we want

• p(color) is a normalization term



Priors

• p(skin) = prior
– Estimate from training data

– Tunes “sensitivity” of skin detector

– Can incorporate even more information:
e.g. are skin pixels more likely to be found in certain 
regions of the image?

• With more than 1 class, priors encode what 
classes are more likely



Skin Detection Results

Jones & Rehg



Birchfield

Skin Color-Based Face Tracking












Learning Probability Distributions

• Where do probability distributions come from?

• Learn them from observed data



Gaussian Model

• Simplest model for probability distribution: 
Gaussian

Symmetric:

Asymmetric:
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Maximum Likelihood

• Given observations x1…xn, want to find model 
m that maximizes likelihood

• Can rewrite as
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Maximum Likelihood

• If m is a Gaussian, this turns into

and minimizing it (hence maximizing likelihood) 
can be done in closed form
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Mixture Models

• Although single-class models are useful, the real 
fun is in multiple-class models

• p(observation) = Σ πclass pclass(observation)

• Interpretation: the object has some probability 
πclass of belonging to each class

• Probability of a measurement is a linear 
combination of models for different classes



Learning Mixture Models

• No closed form solution

• k-means: Iterative approach
– Start with k models in mixture

– Assign each observation to closest model

– Recompute maximum likelihood parameters
for each model



k-means
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k-means

• This process always converges (to something)
– Not necessarily globally-best assignment

• Informal proof: look at energy minimization

– Reclassifying points reduces (or maintains) energy

– Recomputing centers reduces (or maintains) energy

– Can’t reduce energy forever
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“Probabilistic k-means”

• Use Gaussian probabilities to assign
point ↔ cluster weights
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• Use πp,j to compute weighted average and 
covariance for each cluster

“Probabilistic k-means”
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Expectation Maximization

• This is a special case of the expectation 
maximization algorithm

• General case: “missing data” framework
– Have known data (feature vectors) and unknown 

data (assignment of points to clusters)

– E step: use known data and current estimate of 
model to estimate unknown

– M step: use current estimate of complete data to 
solve for optimal model



EM and Robustness

• One example of using generalized EM 
framework: robustness

• Make one category correspond to “outliers”
– Use noise model if known

– If not, assume e.g. uniform noise

– Do not update parameters in M step



Example: Using EM to Fit to Lines

Good data



Example: Using EM to Fit to Lines

With outlier



Example: Using EM to Fit to Lines

EM fit

Weights of “line”
(vs. “noise”)



Example: Using EM to Fit to Lines

EM fit – bad local minimum

Weights of “line”
(vs. “noise”)



Example: Using EM to Fit to Lines

Fitting to
multiple

lines



Example: Using EM to Fit to Lines

Local minima



Weighted Observations

• In some applications, the datapoints are pixels
– Weighted by intensity
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EM Demo



Eliminating Local Minima

• Re-run with multiple starting conditions

• Evaluate results based on
– Number of points assigned to each

(non-noise) group
– Variance of each group
– How many starting positions converge

to each local maximum

• With many starting positions, can accommodate 
many outliers



Selecting Number of Clusters

• Re-run with different numbers of clusters, look 
at total error

• Will often see “knee” in the curve

Noise in data vs. error in model
Number of clusters
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Overfitting

• Why not use many clusters, get low error?

• Complex models bad at filtering noise
(with k clusters can fit k data points exactly)

• Complex models have less predictive power

• Occam’s razor: entia non multiplicanda sunt 
praeter necessitatem (“Things should not be 
multiplied beyond necessity”)



Training / Test Data

• One way to see if you have overfitting problems:
– Divide your data into two sets

– Use the first set (“training set”) to train model

– Compute error on the second set of data (“test set”)

– If error not comparable to training, have overfitting
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