
Motion and Optical Flow



Moving to Multiple Images

• So far, we’ve mostly looked at processing a
single image

• Multiple images
– Multiple cameras at one time: stereo

– Single camera at many times: video
• Moving camera

• Moving objects

• Changing environment (e.g., lighting)

– (Multiple cameras at multiple times)



Applications of Multiple Images

• 2D
– Feature / object tracking

– Segmentation based on motion

– Image fusion

• 3D
– Shape extraction

– Motion capture



Applications of Multiple Images
in Graphics

• Stitching images into panoramas

• Automatic image morphing

• Reconstruction of 3D models for rendering

• Capturing articulated motion for animation 



Applications of Multiple Images
in Biological Systems

• Shape inference

• Peripheral sensitivity to motion (low-level)

• Looming field – obstacle avoidance

• Very similar applications in robotics



Looming Field

• Pure translation: 
motion looks like 
it originates at a 
point – focus of 
expansion



Key Problem

• Main problem in most multiple-image methods: 
correspondence



Correspondence

• Small displacements
– Differential algorithms
– Based on gradients in space and time
– Dense correspondence estimates
– Most common with video

• Large displacements
– Matching algorithms
– Based on correlation or features
– Sparse correspondence estimates
– Most common with multiple cameras / stereo



Result of Correspondence

• For points in image i, displacements to 
corresponding locations in image j

• In video, usually called motion field

• In stereo, usually called disparity



Computing Motion Field

• Basic idea: a small portion of the image
(“local neighborhood”) shifts position

• Assumptions
– No / small changes in reflected light

– No / small changes in scale

– No occlusion or disocclusion

– Neighborhood is correct size: aperture problem



Actual and Apparent Motion

• If these assumptions violated, can still use the 
same methods – apparent motion

• Result of algorithm is optical flow
(vs. ideal motion field)

• Most obvious effects:
– Aperture problem: can only get motion 

perpendicular to edges

– Errors near discontinuities (occlusions)



Aperture Problem

• Too big:
confused by
multiple motions

• Too small:
only get motion
perpendicular
to edge



Computing Optical Flow:
Preliminaries

• Image sequence I(x,y,t)

• Uniform discretization along x,y,t –
“cube” of data

• Differential framework: compute partial 
derivatives along x,y,t by convolving with 
derivative of Gaussian



Computing Optical Flow:
Image Brightness Constancy

• Basic idea: a small portion of the image
(“local neighborhood”) shifts position

• Brightness constancy assumption

0=
dt
dI



Computing Optical Flow:
Image Brightness Constancy

• This does not say that the image remains
the same brightness!

• vs.     : total vs. partial derivative

• Use chain rule
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Computing Optical Flow:
Image Brightness Constancy

• Given optical flow v(x,y)
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Computing Optical Flow:
Discretization

• Look at some neighborhood N:
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Computing Optical Flow:
Least Squares

• In general, overconstrained linear system

• Solve by least squares
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Computing Optical Flow:
Stability

• Has a solution unless  C = ATA is singular
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Computing Optical Flow:
Stability

• Where have we encountered C before?

• Corner detector!

• C is singular if constant intensity or edge

• Use eigenvalues of C:
– to evaluate stability of optical flow computation

– to find good places to compute optical flow
(finding good features to track)

– [Shi-Tomasi]



Computing Optical Flow:
Improvements

• Assumption that optical flow is constant over 
neighborhood not always good

• Decreasing size of neighborhood ⇒
C more likely to be singular

• Alternative: weighted least-squares
– Points near center = higher weight

– Still use larger neighborhood



Computing Optical Flow:
Weighted Least Squares

• Let W be a matrix of weights
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Computing Optical Flow:
Improvements

• What if windows are still bigger?

• Adjust motion model: no longer constant within 
a window

• Popular choice: affine model



Computing Optical Flow:
Affine Motion Model

• Translational model

• Affine model

• Solved as before, but 6 unknowns instead of 2
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Computing Optical Flow:
Improvements

• Larger motion: how to maintain “differential” 
approximation?

• Solution: iterate

• Even better: adjust window / smoothing
– Early iterations: use larger Gaussians to

allow more motion 

– Late iterations: use less blur to find exact solution, 
lock on to high-frequency detail



Iteration

• Local refinement of optical flow estimate

• Sort of equivalent to multiple iterations of 
Newton’s method



Computing Optical Flow:
Lucas-Kanade

• Iterative algorithm:
1. Set σ = large (e.g. 3 pixels)

2. Set I’ ← I1
3. Set v ← 0

4. Repeat while SSD(I’, I2) > τ
1. v += Optical flow(I’ → I2)

2. I’ ← Warp(I1, v)

5. After n iterations,
set σ = small (e.g. 1.5 pixels)



Computing Optical Flow:
Lucas-Kanade

• I’ always holds warped version of I1
– Best estimate of I2

• Gradually reduce thresholds

• Stop when difference between I’ and I2 small
– Simplest difference metric = sum of squared 

differences (SSD) between pixels



Image Warping

• Given a coordinate transform x’ = h(x) and a 
source image f(x), how do we compute a 
transformed image g(x’) = f(h(x))?

f(x) g(x’)x x’

h(x)

Szeliski



Forward Warping

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’)

• What if pixel lands “between” two pixels?

f(x) g(x’)x x’

h(x)

Szeliski



Forward Warping

• Send each pixel f(x) to its corresponding 
location x’ = h(x) in g(x’)

• What if pixel lands “between” two pixels?

• Answer: add “contribution” to several pixels, 
normalize later (splatting)

f(x) g(x’)x x’

h(x)

Szeliski



Inverse Warping

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x)

• What if pixel comes from “between” two pixels?

f(x) g(x’)x x’

h-1(x’)

Szeliski



Inverse Warping

• Get each pixel g(x’) from its corresponding 
location x = h-1(x’) in f(x)

• What if pixel comes from “between” two pixels?

• Answer: resample color value from interpolated 
(prefiltered) source image

Szeliski



Optical Flow Applications

[Feng & Perona]

Video Frames



Optical Flow Applications

Optical Flow Depth Reconstruction

[Feng & Perona]



Optical Flow Applications

Obstacle Detection: Unbalanced Optical Flow

[Temizer]



Optical Flow Applications

• Collision avoidance: 
keep optical flow 
balanced between sides 
of image

[Temizer]
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