Texture Analysis and Synthesis

Texture

- Texture: pattern that "looks the same" at all locations
- May be structured or random

Applications of Textures

Texture analysis

- Detemining statistical properties of textures
- Segmentation
- Recognition
- Shape from texture
- Texture synthesis

Image Pyramids

Pyramid Creation

- "Gaussian" Pyramid
- "Laplacian" Pyramid
 - Created from Gaussian pyramid by subtraction $L_i = G_i - expand(G_{i+1})$

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Oriented Filter Banks

Steerable Pyramid Texture Analysis

- Pass image through filter bank
- Compile histogram of intensities output by each filter
- To synthesize new texture:
 - Start with random noise image
 - Adjust histograms to match original image
 - Re-synthesize image from filter outputs

Histogram Equalization

 Goal: function that remaps intensities to make new histogram H₁, equal H₂

Histogram Equalization

1. Compute CDFs of histograms

2. For each intensity, map through CDF 1 then look up inverse in CDF 2

Texture Analysis / Synthesis

Original Texture

Synthesized Texture

Heeger and Bergen

Textons

- Elements ("textons") either identical or come from some statistical distribution
- Can analyze in natural images

Clustering Textons

- Output of bank of *n* filters can be thought of as vector in *n*-dimensional space
- Can cluster these vectors using k-means [Malik et al.]
- Result: dictionary of most common textures

Clustering Textons

Image

Clustered Textons

Texton to Pixel Mapping

[Malik et al.]

Using Texture in Segmentation

 Compute histogram of how many times each of the k clusters occurs in a neighborhood

• Define similarity of histograms h_i and h_j using χ^2

$$\chi^{2} = \frac{1}{2} \sum_{k} \frac{\left(h_{i}(k) - h_{j}(k)\right)^{2}}{h_{i}(k) + h_{j}(k)}$$

• Different histograms \rightarrow separate regions

Texture Segmentation

Markov Random Fields

- Different way of thinking about textures
- Premise: probability distribution of a pixel depends on values of neighbors
- Probability the same throughout image
 Extension of Markov chains

Texture Synthesis Based on MRF

• For each pixel in destination:

- Take already-synthesized neighbors
- Find closest match in original texture
- Copy pixel to destination
- Efros & Leung 1999, speedup by Wei & Levoy 2000
- Extension to copying whole blocks by Efros & Freeman 2001

 Let's look at their talk...

[Wei & Levoy]