
Recognition, SVD, and PCA



Recognition

• Suppose you want to find a face in an image

• One possibility: look for something that looks 
sort of like a face (oval, dark band near top, 
dark band near bottom)

• Another possibility: look for pieces of faces 
(eyes, mouth, etc.) in a specific arrangement



Templates

• Model of a “generic” or “average” face
– Learn templates from example data

• For each location in image, look for template at 
that location
– Optionally also search over scale, orientation



Templates

• In the simplest case, based on intensity
– Template is average of all faces in training set

– Comparison based on e.g. SSD

• More complex templates
– Outputs of feature detectors

– Color histograms

– Both position and frequency information (wavelets)



Average Princetonian Face

• From 2005 BSE thesis
project by Clay Bavor
and Jesse Levinson



Detecting Princetonians

[Bavor & Levinson]

Matching response
(darker = better match)



More Detection Results

Sample Images

Wavelet
Histogram
Template

Detection of
frontal / profile

faces

[Schneiderman and Kanade]



More Face Detection Results

[Schneiderman and Kanade]



Recognition Using
Relations Between Templates

• Often easier to recognize a small feature
– e.g., lips easier to recognize than faces

– For articulated objects (e.g. people), template for 
whole class usually complicated

• So, identify small pieces…



Pieces of Princetonians

[Bavor & Levinson]



Recognition Using
Relations Between Templates

• Often easier to recognize a small feature
– e.g., lips easier to recognize than faces

– For articulated objects (e.g. people), template for 
whole class usually complicated

• So, identify small pieces and look for spatial 
arrangements
– Many false positives from identifying pieces



Graph Matching
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Graph Matching
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Graph Matching
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Graph Matching
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Graph Matching
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Graph Matching

• Large search space
– Heuristics for pruning

• Missing features
– Look for maximal consistent assignment

• Noise, spurious features

• Incomplete constraints
– Verification step at end



Recognition

• Suppose you want to recognize a
particular face

• How does this face differ from average face



How to Recognize Specific People?

• Consider variation from average face

• Not all variations equally important
– Variation in a single pixel relatively unimportant

• If image is high-dimensional vector, want to find 
directions in this space with high variation



Principal Components Analaysis

• Principal Components Analysis (PCA): 
approximating a high-dimensional data set with 
a lower-dimensional subspace
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Digression:
Singular Value Decomposition (SVD)

• Handy mathematical technique that has 
application to many problems

• Given any m×n matrix A, algorithm to find 
matrices U, V, and W such that

A = U W VT

U is m×n and orthonormal

V is n×n and orthonormal

W is n×n and diagonal



SVD

• Treat as black box: code widely available 
(svd(A,0) in Matlab)
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SVD

• The wi are called the singular values of A

• If A is singular, some of the wi will be 0

• In general rank(A) = number of nonzero wi

• SVD is mostly unique (up to permutation of 
singular values, or if some wi are equal)



SVD and Inverses

• Why is SVD so useful?

• Application #1: inverses

• A-1=(VT)-1 W-1 U-1 = V W-1 UT

• This fails when some wi are 0
– It’s supposed to fail – singular matrix

• Pseudoinverse: if wi=0, set 1/wi to 0 (!)
– “Closest” matrix to inverse

– Defined for all (even non-square) matrices



SVD and Least Squares

• Solving Ax=b by least squares

• x=pseudoinverse(A) times b

• Compute pseudoinverse using SVD
– Lets you see if data is singular

– Even if not singular, ratio of max to min singular 
values (condition number) tells you how stable the 
solution will be

– Set 1/wi to 0 if wi is small (even if not exactly 0)



SVD and Eigenvectors

• Let A=UWVT, and let xi be ith column of V

• Consider ATA xi:

• So elements of W are squared eigenvalues and 
columns of V are eigenvectors of ATA
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SVD and Matrix Similarity

• One common definition for the norm of a 
matrix is the Frobenius norm:

• Frobenius norm can be computed from SVD

• So changes to a matrix can be evaluated by 
looking at changes to singular values
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SVD and Matrix Similarity

• Suppose you want to find best rank-k
approximation to A

• Answer: set all but the largest k singular values 
to zero

• Can form compact representation by eliminating 
columns of U and V corresponding to zeroed wi



SVD and Orthogonalization

• The matrix U is the “closest” orthonormal matrix 
to A

• Yet another useful application of the matrix-
approximation properties of SVD

• Much more stable numerically than
Graham-Schmidt orthogonalization

• Find rotation given general affine matrix



SVD and PCA

• Principal Components Analysis (PCA): 
approximating a high-dimensional data set with 
a lower-dimensional subspace
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SVD and PCA

• Data matrix with points as rows, take SVD
– Subtract out mean (“whitening”)

• Columns of Vk are principal components

• Value of wi gives importance of each 
component



PCA on Faces: “Eigenfaces”

Average
face

First principal component

Other
components

For all except average,
“gray” = 0,

“white” > 0,
“black” < 0



Using PCA for Recognition

• Store each person as coefficients of projection 
onto first few principal components

• Compute projections of target image, compare 
to database (“nearest neighbor classifier”)
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