Feature Detectors and Descriptors: Corners, Lines, etc.
Edges vs. Corners

- Edges = maxima in intensity gradient
Edges vs. Corners

- Corners = lots of variation in direction of gradient in a small neighborhood
Detecting Corners

• How to detect this variation?
• Not enough to check average $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$
Detecting Corners

- Claim: the following covariance matrix summarizes the statistics of the gradient

\[C = \begin{bmatrix} \sum f_x^2 & \sum f_x f_y \\ \sum f_x f_y & \sum f_y^2 \end{bmatrix} \]

\[f_x = \frac{\partial f}{\partial x}, \quad f_y = \frac{\partial f}{\partial y} \]

Summations over local neighborhoods
Detecting Corners

- Examine behavior of C by testing its effect in simple cases
- Case #1: Single edge in local neighborhood
Case#1: Single Edge

• Let \((a,b)\) be gradient along edge

• Compute \(C \cdot (a,b):\)

\[
C \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix}
\sum f_x^2 & \sum f_x f_y \\
\sum f_x f_y & \sum f_y^2
\end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}
\]

\[
= \sum (\nabla f)(\nabla f)^T \begin{bmatrix} a \\ b \end{bmatrix}
\]

\[
= \sum (\nabla f) \left(\nabla f \cdot \begin{bmatrix} a \\ b \end{bmatrix} \right)
\]
Case #1: Single Edge

- However, in this simple case, the only nonzero terms are those where $\nabla f = (a,b)$
- So, $C \cdot (a,b)$ is just some multiple of (a,b)
Case #2: Corner

- Assume there is a corner, with perpendicular gradients \((a, b)\) and \((c, d)\)
Case #2: Corner

• What is $C \cdot (a,b)$?

 – Since $(a,b) \cdot (c,d) = 0$, the only nonzero terms are those where $\nabla f = (a,b)$

 – So, $C \cdot (a,b)$ is again just a multiple of (a,b)

• What is $C \cdot (c,d)$?

 – Since $(a,b) \cdot (c,d) = 0$, the only nonzero terms are those where $\nabla f = (c,d)$

 – So, $C \cdot (c,d)$ is a multiple of (c,d)
Corner Detection

- Matrix times vector = multiple of vector
- Eigenvectors and eigenvalues!
- In particular, if C has one large eigenvalue, there’s an edge
- If C has two large eigenvalues, have corner
- Tomasi-Kanade corner detector
Corner Detection Implementation

1. Compute image gradient
2. For each $m \times m$ neighborhood, compute matrix C
3. If smaller eigenvalue λ_2 is larger than threshold τ, record a corner
4. Nonmaximum suppression: only keep strongest corner in each $m \times m$ window
Corner Detection Results

• Checkerboard with noise

Trucco & Verri
Corner Detection Results
Corner Detection Results

Histogram of λ_2 (smaller eigenvalue)
Corner Detection

• Application: good features for tracking, correspondence, etc.
 – Why are corners better than edges for tracking?

• Other corner detectors
 – Look for curvature in edge detector output
 – Perform color segmentation on neighborhoods
 – Others...
Invariance

• Suppose you rotate the image by some angle
 – Will you still find the same corners?

• What if you change the brightness?

• Scale?
Scale-Invariant Feature Detection

- Key idea: compute some function f over different scales, find extremum
 - Common definition of f: LoG or DoG
 - Find local minima or maxima over position and scale
Automatic scale selection

Lindeberg et al., 1996
Automatic scale selection

\[f(I_{h...m}(x, \sigma)) \]

\[f(I_{h...m}(x', \sigma')) \]
Automatic scale selection

Normalize: rescale to fixed size
Fitting and Matching

• We’ve seen low-level detectors
• Next step: using output for higher-level tasks
 – Detection/fitting of more complex primitives
 – Matching
Detecting Lines

• What is the difference between line detection and edge detection?
 – Edges = local
 – Lines = nonlocal

• Line detection usually performed on the output of an edge detector
Detecting Lines

• Possible approaches:
 – Brute force: enumerate all lines, check if present
 – Hough transform: vote for lines to which detected edges might belong
 – Fitting: given guess for approximate location, refine it

• Second method efficient for finding unknown lines, but not always accurate
Hough Transform

• General idea: transform from image coordinates to parameter space of feature
 – Need parameterized model of features
 – For each pixel, determine all parameter values that might have given rise to that pixel; vote
 – At end, look for peaks in parameter space
Hough Transform for Lines

• Generic line: $y = ax + b$

• Parameters: a and b
Hough Transform for Lines

1. Initialize table of buckets, indexed by a and b, to zero

2. For each detected edge pixel \((x,y)\):
 a. Determine all \((a,b)\) such that \(y = ax + b\)
 b. Increment bucket \((a,b)\)

3. Buckets with many votes indicate probable lines
Hough Transform for Lines
Hough Transform for Lines
Bucket Selection

• How to select bucket size?
 – Too small: poor performance on noisy data
 – Too large: poor accuracy, long running times, possibility of false positives

• Large buckets + verification and refinement
 – Problems distinguishing nearby lines

• Be smarter at selecting buckets
 – Use gradient information to select subset of buckets
 – More sensitive to noise
Difficulties with Hough Transform for Lines

- **Slope / intercept parameterization not ideal**
 - Non-uniform sampling of directions
 - Can’t represent vertical lines

- **Angle / distance parameterization**
 - Line represented as \((r, \theta)\) where
 \[x \cos \theta + y \sin \theta = r \]
Angle / Distance Parameterization

- Advantage: uniform parameterization of directions
- Disadvantage: space of all lines passing through a point becomes a sinusoid in \((r, \theta)\) space
Hough Transform Results
Hough Transform Results
Hough Transform

• What else can be detected using Hough transform?
• Anything, but *dimensionality* is key
Hough Transform for Circles

- Space of circles has a 3-dimensional parameter space: position (2-d) and radius
- So, each pixel gives rise to 2-d sheet of values in 3-d space
Hough Transform for Circles

• In many cases, can simplify problem by using more information

• Example: using gradient information

• Still need 3-d bucket space, but each pixel only votes for 1-d subset
Hough Transform for Circles – Secants
Simplifying Hough Transforms

• Another trick: use prior information
 – For example, if looking for circles of a particular size, reduce votes even further
Fitting

- Output of Hough transform often not accurate enough
- Use as initial guess for fitting
Fitting Lines

Initial guess
Fitting Lines

Least-squares minimization
Fitting Lines
Fitting Lines

• As before, have to be careful about parameterization

• Simplest line fitting formulas minimize vertical (not perpendicular) point-to-line distance

• Closed-form solution for point-to-line distance, not necessarily true for other curves
Total Least Squares

1. Translate center of mass to origin
2. Compute covariance matrix, find eigenvector w. largest eigenvalue
Outliers

- Least squares assumes Gaussian errors
- **Outliers:** points with extremely low probability of occurrence (according to Gaussian statistics)
 - Can be result of *data association* problems
- Can have strong influence on least squares
Robust Estimation

- Goal: develop parameter estimation methods insensitive to *small* numbers of *large* errors
- General approach: try to give large deviations less weight
- M-estimators: minimize some function other than \((y - f(x,a,b,...))^2\)
Least Absolute Value Fitting

- Minimize $\sum_i |y_i - f(x_i, a, b, \ldots)|$

 instead of $\sum_i (y_i - f(x_i, a, b, \ldots))^2$

- Points far away from trend get comparatively less influence
Example: Constant

- For constant function $y = a$, minimizing $\sum (y - a)^2$ gives $a = \text{mean}$
- Minimizing $\sum |y - a|$ gives $a = \text{median}$
Doing Robust Fitting

- In general case, nasty function:
 discontinuous derivative
- Numerical methods (e.g. Nelder-Mead simplex) sometimes work
Iteratively Reweighted Least Squares

• Sometimes-used approximation:
 convert to iterated weighted least squares

\[
\sum_i |y_i - f(x_i, a, b, \ldots)|
\]

\[
= \sum_i \frac{1}{|y_i - f(x_i, a, b, \ldots)|} (y_i - f(x_i, a, b, \ldots))^2
\]

\[
= \sum_i w_i (y_i - f(x_i, a, b, \ldots))^2
\]

with \(w_i\) based on previous iteration
Iteratively Reweighted Least Squares

- Different options for weights
 - Avoid problems with infinities
 - Give even less weight to outliers

\[
\begin{align*}
 w_i &= \frac{1}{|y_i - f(x_i, a, b, \ldots)|} \\
 w_i &= \frac{1}{k + |y_i - f(x_i, a, b, \ldots)|} \\
 w_i &= \frac{1}{k + \left(\frac{y_i - f(x_i, a, b, \ldots)}{\sigma}
ight)^2} \\
 w_i &= e^{-k(y_i - f(x_i, a, b, \ldots))^2}
\end{align*}
\]
Outlier Detection and Rejection

• Special case of IRWLS: set weight = 0 if outlier, 1 otherwise

• Detecting outliers: $(y_i - f(x_i))^2 > \text{threshold}$
 – One choice: multiple of mean squared difference
 – Better choice: multiple of median squared difference
 – Can iterate…
 – As before, not guaranteed to do anything reasonable, tends to work OK if only a few outliers
RANdom SAmple Consensus: designed for bad data (in best case, up to 50% outliers)

• Take many random subsets of data
 – Compute least squares fit for each sample
 – See how many points agree:
 \((y_i - f(x_i))^2 < \text{threshold}\)
 – Threshold user-specified or estimated from more trials

• At end, use fit that agreed with most points
 – Can do one final least squares with all inliers
Feature Descriptors

- Feature matching useful for:
 - Image alignment (e.g., mosaics), 3D reconstruction,
 - motion tracking, object recognition, indexing and
 - database retrieval, robot navigation, etc.

[Seitz]
Properties of Feature Descriptors

• Easily computed
• Easily compared (compact, fixed-dimensional)
• Invariant
 – Translation
 – Rotation
 – Scale
 – Change in image brightness
 – Change in perspective?
Rotation Invariance for Feature Descriptors

- Rotate window according to dominant orientation
 - Eigenvector of C corresponding to maximum eigenvalue
Scale Invariant Feature Transform

- Take 16×16 window around detected feature
- Create histogram of thresholded edge orientations

[Seitz / Lowe]
Full SIFT Descriptor

- Divide 16×16 window into 4×4 grid of cells
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128-dimensional descriptor
Properties of SIFT

- Fast (real-time) and robust descriptor for matching
 - Handles changes in viewpoint (~60° out of plane rotation)
 - Handles significant changes in illumination
 - Lots of code available

[Seitz]