
Feature Detectors and Descriptors:
Corners, Lines, etc.



Edges vs. Corners

• Edges = maxima in intensity gradient



Edges vs. Corners

• Corners = lots of variation in direction of 
gradient in a small neighborhood



Detecting Corners

• How to detect this variation?

• Not enough to check average      and
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Detecting Corners

• Claim: the following covariance matrix 
summarizes the statistics of the gradient

Summations over local neighborhoods
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Detecting Corners

• Examine behavior of C by testing its effect in 
simple cases

• Case #1: Single edge in local neighborhood



Case#1: Single Edge

• Let (a,b) be gradient along edge

• Compute C⋅ (a,b):
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Case #1: Single Edge

• However, in this simple case, the only nonzero 
terms are those where ∇f = (a,b)

• So, C⋅ (a,b) is just some multiple of (a,b)



Case #2: Corner

• Assume there is a corner, with perpendicular 
gradients (a,b) and (c,d)



Case #2: Corner

• What is C⋅ (a,b)?
– Since (a,b) ⋅ (c,d) = 0, the only nonzero terms are 

those where ∇f = (a,b)

– So, C⋅ (a,b) is again just a multiple of (a,b)

• What is C⋅ (c,d)?
– Since (a,b) ⋅ (c,d) = 0, the only nonzero terms are 

those where ∇f = (c,d)

– So, C⋅ (c,d) is a multiple of (c,d)



Corner Detection

• Matrix times vector = multiple of vector

• Eigenvectors and eigenvalues!

• In particular, if C has one large eigenvalue, 
there’s an edge

• If C has two large eigenvalues, have corner

• Tomasi-Kanade corner detector



Corner Detection Implementation 

1. Compute image gradient

2. For each m×m neighborhood,
compute matrix C

3. If smaller eigenvalue λ2 is larger than threshold τ, 
record a corner

4. Nonmaximum suppression: only keep strongest 
corner in each m×m window



Corner Detection Results

• Checkerboard
with noise

Trucco & Verri



Corner Detection Results



Corner Detection Results

Histogram of λ2 (smaller eigenvalue)



Corner Detection

• Application: good features for tracking, 
correspondence, etc.
– Why are corners better than edges for tracking?

• Other corner detectors
– Look for curvature in edge detector output

– Perform color segmentation on neighborhoods

– Others…



Invariance

• Suppose you rotate the image by some angle
– Will you still find the same corners?

• What if you change the brightness?

• Scale?

[Seitz]



• Key idea: compute some function f over 
different scales, find extremum
– Common definition of f: LoG or DoG

– Find local minima or maxima over position and scale

Scale-Invariant Feature Detection



Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

















Fitting and Matching

• We’ve seen low-level detectors

• Next step: using output for higher-level tasks
– Detection/fitting of more complex primitives

– Matching



Detecting Lines

• What is the difference between line detection 
and edge detection?
– Edges = local

– Lines = nonlocal

• Line detection usually performed on the output 
of an edge detector



Detecting Lines

• Possible approaches:
– Brute force: enumerate all lines, check if present

– Hough transform: vote for lines to which detected 
edges might belong

– Fitting: given guess for approximate location, refine it

• Second method efficient for finding unknown 
lines, but not always accurate



Hough Transform

• General idea: transform from image coordinates 
to parameter space of feature
– Need parameterized model of features

– For each pixel, determine all parameter values that 
might have given rise to that pixel; vote

– At end, look for peaks in parameter space



Hough Transform for Lines

• Generic line: y = ax+b

• Parameters: a and b



Hough Transform for Lines

1. Initialize table of buckets, indexed by
a and b, to zero

2. For each detected edge pixel (x,y):
a. Determine all (a,b) such that y = ax+b

b. Increment bucket (a,b)

3. Buckets with many votes indicate
probable lines



Hough Transform for Lines
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Hough Transform for Lines
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Bucket Selection

• How to select bucket size?
– Too small: poor performance on noisy data
– Too large: poor accuracy, long running times, 

possibility of false positives

• Large buckets + verification and refinement
– Problems distinguishing nearby lines

• Be smarter at selecting buckets
– Use gradient information to select subset of buckets
– More sensitive to noise



Difficulties with
Hough Transform for Lines

• Slope / intercept parameterization not ideal
– Non-uniform sampling of directions

– Can’t represent vertical lines

• Angle / distance parameterization
– Line represented as (r,θ ) where

x cos θ + y sin θ = r

r

θ



Angle / Distance Parameterization

• Advantage: uniform parameterization
of directions

• Disadvantage: space of all lines
passing through a point becomes a
sinusoid in (r,θ ) space



Hough Transform Results

Forsyth & Ponce



Hough Transform Results

Forsyth & Ponce



Hough Transform

• What else can be detected using
Hough transform?

• Anything, but dimensionality is key



Hough Transform for Circles

• Space of circles has a 3-dimensional parameter 
space: position (2-d) and radius

• So, each pixel gives rise to 2-d sheet of values in 
3-d space



Hough Transform for Circles

• In many cases, can simplify problem by
using more information

• Example: using gradient information

• Still need 3-d bucket space, but each pixel only votes 
for 1-d subset



Hough Transform for Circles – Secants
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Simplifying Hough Transforms

• Another trick: use prior information
– For example, if looking for circles of a particular size, 

reduce votes even further



Fitting

• Output of Hough transform often not accurate 
enough

• Use as initial guess for fitting



Fitting Lines

Initial guess



Fitting Lines

Least-squares
minimization



Fitting Lines



Fitting Lines

• As before, have to be careful about 
parameterization

• Simplest line fitting formulas minimize vertical
(not perpendicular) point-to-line distance

• Closed-form solution for point-to-line distance, 
not necessarily true for other curves



Total Least Squares

1. Translate center of mass to origin





Total Least Squares

2. Compute covariance matrix,
find eigenvector w. largest eigenvalue



Outliers

• Least squares assumes Gaussian errors

• Outliers: points with extremely low probability 
of occurrence (according to Gaussian statistics)
– Can be result of data association problems

• Can have strong influence on least squares



Robust Estimation

• Goal: develop parameter estimation methods 
insensitive to small numbers of large errors

• General approach: try to give large deviations 
less weight

• M-estimators: minimize some function other 
than (y – f(x,a,b,…))2



Least Absolute Value Fitting

• Minimize

instead of

• Points far away from trend get comparatively
less influence
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Example: Constant

• For constant function  y = a,
minimizing  Σ(y–a)2 gives a = mean

• Minimizing  Σ|y–a|  gives  a = median



Doing Robust Fitting

• In general case, nasty function:
discontinuous derivative

• Numerical methods (e.g. Nelder-Mead simplex)
sometimes work



Iteratively Reweighted Least Squares

• Sometimes-used approximation:
convert to iterated weighted least squares

with wi based on previous iteration
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Iteratively Reweighted Least Squares

• Different options for weights
– Avoid problems with infinities

– Give even less weight to outliers
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Outlier Detection and Rejection

• Special case of IRWLS: set weight = 0 if outlier, 
1 otherwise

• Detecting outliers: (yi–f(xi))2 > threshold
– One choice: multiple of mean squared difference

– Better choice: multiple of median squared difference

– Can iterate…

– As before, not guaranteed to do anything reasonable, 
tends to work OK if only a few outliers



RANSAC

• RANdom SAmple Consensus: desgined for
bad data (in best case, up to 50% outliers)

• Take many random subsets of data
– Compute least squares fit for each sample

– See how many points agree: (yi–f(xi))2 < threshold

– Threshold user-specified or estimated from more trials

• At end, use fit that agreed with most points
– Can do one final least squares with all inliers



• Feature matching useful for:
Image alignment (e.g., mosaics), 3D reconstruction, 
motion tracking, object recognition, indexing and 
database retrieval, robot navigation, etc.

Feature Descriptors

?

[Seitz]



Properties of Feature Descriptors

• Easily computed

• Easily compared (compact, fixed-dimensional)

• Invariant
– Translation

– Rotation

– Scale

– Change in image brightness

– Change in perspective?



Rotation Invariance for Feature Descriptors

• Rotate window according to dominant orientation
– Eigenvector of C corresponding to maximum eigenvalue

[Matthew Brown]



• Take 16×16 window around detected feature

• Create histogram of thresholded edge orientations

Scale Invariant Feature Transform

[Seitz / Lowe]

0 2π
angle histogram



Full SIFT Descriptor

• Divide 16×16 window into 4×4 grid of cells

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128-dimensional descriptor

[Seitz / Lowe]



Properties of SIFT

• Fast (real-time) and robust descriptor for matching
– Handles changes in viewpoint (~60° out of plane rotation)

– Handles significant changes in illumination

– Lots of code available

[Seitz]
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