
Feature Detectors and Descriptors:
Corners, Lines, etc.

Edges vs. Corners

• Edges = maxima in intensity gradient

Edges vs. Corners

• Corners = lots of variation in direction of
gradient in a small neighborhood

Detecting Corners

• How to detect this variation?

• Not enough to check average and
x
f
∂
∂

y
f
∂
∂

Detecting Corners

• Claim: the following covariance matrix
summarizes the statistics of the gradient

Summations over local neighborhoods

y
ff

x
ff

fff
fff

C yx
yyx

yxx

∂
∂

=
∂
∂

=











=

∑∑
∑∑ ,2

2

Detecting Corners

• Examine behavior of C by testing its effect in
simple cases

• Case #1: Single edge in local neighborhood

Case#1: Single Edge

• Let (a,b) be gradient along edge

• Compute C⋅ (a,b):

()()

()∑

∑

∑∑
∑∑

















⋅∇∇=









∇∇=





















=








⋅

b
a

ff

b
a

ff

b
a

fff
fff

b
a

C
yyx

yxx

T

2

2

Case #1: Single Edge

• However, in this simple case, the only nonzero
terms are those where ∇f = (a,b)

• So, C⋅ (a,b) is just some multiple of (a,b)

Case #2: Corner

• Assume there is a corner, with perpendicular
gradients (a,b) and (c,d)

Case #2: Corner

• What is C⋅ (a,b)?
– Since (a,b) ⋅ (c,d) = 0, the only nonzero terms are

those where ∇f = (a,b)

– So, C⋅ (a,b) is again just a multiple of (a,b)

• What is C⋅ (c,d)?
– Since (a,b) ⋅ (c,d) = 0, the only nonzero terms are

those where ∇f = (c,d)

– So, C⋅ (c,d) is a multiple of (c,d)

Corner Detection

• Matrix times vector = multiple of vector

• Eigenvectors and eigenvalues!

• In particular, if C has one large eigenvalue,
there’s an edge

• If C has two large eigenvalues, have corner

• Tomasi-Kanade corner detector

Corner Detection Implementation

1. Compute image gradient

2. For each m×m neighborhood,
compute matrix C

3. If smaller eigenvalue λ2 is larger than threshold τ,
record a corner

4. Nonmaximum suppression: only keep strongest
corner in each m×m window

Corner Detection Results

• Checkerboard
with noise

Trucco & Verri

Corner Detection Results

Corner Detection Results

Histogram of λ2 (smaller eigenvalue)

Corner Detection

• Application: good features for tracking,
correspondence, etc.
– Why are corners better than edges for tracking?

• Other corner detectors
– Look for curvature in edge detector output

– Perform color segmentation on neighborhoods

– Others…

Invariance

• Suppose you rotate the image by some angle
– Will you still find the same corners?

• What if you change the brightness?

• Scale?

[Seitz]

• Key idea: compute some function f over
different scales, find extremum
– Common definition of f: LoG or DoG

– Find local minima or maxima over position and scale

Scale-Invariant Feature Detection

Slide from Tinne Tuytelaars

Lindeberg et al, 1996

Slide from Tinne Tuytelaars

Lindeberg et al., 1996

Fitting and Matching

• We’ve seen low-level detectors

• Next step: using output for higher-level tasks
– Detection/fitting of more complex primitives

– Matching

Detecting Lines

• What is the difference between line detection
and edge detection?
– Edges = local

– Lines = nonlocal

• Line detection usually performed on the output
of an edge detector

Detecting Lines

• Possible approaches:
– Brute force: enumerate all lines, check if present

– Hough transform: vote for lines to which detected
edges might belong

– Fitting: given guess for approximate location, refine it

• Second method efficient for finding unknown
lines, but not always accurate

Hough Transform

• General idea: transform from image coordinates
to parameter space of feature
– Need parameterized model of features

– For each pixel, determine all parameter values that
might have given rise to that pixel; vote

– At end, look for peaks in parameter space

Hough Transform for Lines

• Generic line: y = ax+b

• Parameters: a and b

Hough Transform for Lines

1. Initialize table of buckets, indexed by
a and b, to zero

2. For each detected edge pixel (x,y):
a. Determine all (a,b) such that y = ax+b

b. Increment bucket (a,b)

3. Buckets with many votes indicate
probable lines

Hough Transform for Lines

b

a

Hough Transform for Lines

b

a

Bucket Selection

• How to select bucket size?
– Too small: poor performance on noisy data
– Too large: poor accuracy, long running times,

possibility of false positives

• Large buckets + verification and refinement
– Problems distinguishing nearby lines

• Be smarter at selecting buckets
– Use gradient information to select subset of buckets
– More sensitive to noise

Difficulties with
Hough Transform for Lines

• Slope / intercept parameterization not ideal
– Non-uniform sampling of directions

– Can’t represent vertical lines

• Angle / distance parameterization
– Line represented as (r,θ) where

x cos θ + y sin θ = r

r

θ

Angle / Distance Parameterization

• Advantage: uniform parameterization
of directions

• Disadvantage: space of all lines
passing through a point becomes a
sinusoid in (r,θ) space

Hough Transform Results

Forsyth & Ponce

Hough Transform Results

Forsyth & Ponce

Hough Transform

• What else can be detected using
Hough transform?

• Anything, but dimensionality is key

Hough Transform for Circles

• Space of circles has a 3-dimensional parameter
space: position (2-d) and radius

• So, each pixel gives rise to 2-d sheet of values in
3-d space

Hough Transform for Circles

• In many cases, can simplify problem by
using more information

• Example: using gradient information

• Still need 3-d bucket space, but each pixel only votes
for 1-d subset

Hough Transform for Circles – Secants

+ + . . . =

Simplifying Hough Transforms

• Another trick: use prior information
– For example, if looking for circles of a particular size,

reduce votes even further

Fitting

• Output of Hough transform often not accurate
enough

• Use as initial guess for fitting

Fitting Lines

Initial guess

Fitting Lines

Least-squares
minimization

Fitting Lines

Fitting Lines

• As before, have to be careful about
parameterization

• Simplest line fitting formulas minimize vertical
(not perpendicular) point-to-line distance

• Closed-form solution for point-to-line distance,
not necessarily true for other curves

Total Least Squares

1. Translate center of mass to origin



Total Least Squares

2. Compute covariance matrix,
find eigenvector w. largest eigenvalue

Outliers

• Least squares assumes Gaussian errors

• Outliers: points with extremely low probability
of occurrence (according to Gaussian statistics)
– Can be result of data association problems

• Can have strong influence on least squares

Robust Estimation

• Goal: develop parameter estimation methods
insensitive to small numbers of large errors

• General approach: try to give large deviations
less weight

• M-estimators: minimize some function other
than (y – f(x,a,b,…))2

Least Absolute Value Fitting

• Minimize

instead of

• Points far away from trend get comparatively
less influence

∑ −
i

ii baxfy),,,(

()2),,,(∑ −
i

ii baxfy 

Example: Constant

• For constant function y = a,
minimizing Σ(y–a)2 gives a = mean

• Minimizing Σ|y–a| gives a = median

Doing Robust Fitting

• In general case, nasty function:
discontinuous derivative

• Numerical methods (e.g. Nelder-Mead simplex)
sometimes work

Iteratively Reweighted Least Squares

• Sometimes-used approximation:
convert to iterated weighted least squares

with wi based on previous iteration

()

()2

2

),,,(

),,,(
),,,(

1

),,,(








baxfyw

baxfy
baxfy

baxfy

ii
i

i

ii
i ii

i
ii

−=

−
−

=

−

∑

∑

∑

Iteratively Reweighted Least Squares

• Different options for weights
– Avoid problems with infinities

– Give even less weight to outliers

()
()2),,,(

2),,,(
1

),,,(
1

),,,(
1









baxfyk
i

ii
i

ii
i

ii
i

iiew

baxfyk
w

baxfyk
w

baxfy
w

−−=

−+
=

−+
=

−
=

Outlier Detection and Rejection

• Special case of IRWLS: set weight = 0 if outlier,
1 otherwise

• Detecting outliers: (yi–f(xi))2 > threshold
– One choice: multiple of mean squared difference

– Better choice: multiple of median squared difference

– Can iterate…

– As before, not guaranteed to do anything reasonable,
tends to work OK if only a few outliers

RANSAC

• RANdom SAmple Consensus: desgined for
bad data (in best case, up to 50% outliers)

• Take many random subsets of data
– Compute least squares fit for each sample

– See how many points agree: (yi–f(xi))2 < threshold

– Threshold user-specified or estimated from more trials

• At end, use fit that agreed with most points
– Can do one final least squares with all inliers

• Feature matching useful for:
Image alignment (e.g., mosaics), 3D reconstruction,
motion tracking, object recognition, indexing and
database retrieval, robot navigation, etc.

Feature Descriptors

?

[Seitz]

Properties of Feature Descriptors

• Easily computed

• Easily compared (compact, fixed-dimensional)

• Invariant
– Translation

– Rotation

– Scale

– Change in image brightness

– Change in perspective?

Rotation Invariance for Feature Descriptors

• Rotate window according to dominant orientation
– Eigenvector of C corresponding to maximum eigenvalue

[Matthew Brown]

• Take 16×16 window around detected feature

• Create histogram of thresholded edge orientations

Scale Invariant Feature Transform

[Seitz / Lowe]

0 2π
angle histogram

Full SIFT Descriptor

• Divide 16×16 window into 4×4 grid of cells

• Compute an orientation histogram for each cell

• 16 cells * 8 orientations = 128-dimensional descriptor

[Seitz / Lowe]

Properties of SIFT

• Fast (real-time) and robust descriptor for matching
– Handles changes in viewpoint (~60° out of plane rotation)

– Handles significant changes in illumination

– Lots of code available

[Seitz]

	Feature Detectors and Descriptors:�Corners, Lines, etc.
	Edges vs. Corners
	Edges vs. Corners
	Detecting Corners
	Detecting Corners
	Detecting Corners
	Case#1: Single Edge
	Case #1: Single Edge
	Case #2: Corner
	Case #2: Corner
	Corner Detection
	Corner Detection Implementation
	Corner Detection Results
	Corner Detection Results
	Corner Detection Results
	Corner Detection
	Invariance
	Scale-Invariant Feature Detection
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Fitting and Matching
	Detecting Lines
	Detecting Lines
	Hough Transform
	Hough Transform for Lines
	Hough Transform for Lines
	Hough Transform for Lines
	Hough Transform for Lines
	Bucket Selection
	Difficulties with�Hough Transform for Lines
	Angle / Distance Parameterization
	Hough Transform Results
	Hough Transform Results
	Hough Transform
	Hough Transform for Circles
	Hough Transform for Circles
	Hough Transform for Circles – Secants
	Simplifying Hough Transforms
	Fitting
	Fitting Lines
	Fitting Lines
	Fitting Lines
	Fitting Lines
	Total Least Squares
	Total Least Squares
	Outliers
	Robust Estimation
	Least Absolute Value Fitting
	Example: Constant
	Doing Robust Fitting
	Iteratively Reweighted Least Squares
	Iteratively Reweighted Least Squares
	Outlier Detection and Rejection
	RANSAC
	Feature Descriptors
	Properties of Feature Descriptors
	Rotation Invariance for Feature Descriptors
	Scale Invariant Feature Transform
	Full SIFT Descriptor
	Properties of SIFT

