Feature Detectors and Descriptors: Corners, Lines, etc.

• Edges = maxima in intensity gradient

Corners = lots of variation in direction of gradient in a small neighborhood

Detecting Corners

How to detect this variation?
Not enough to check average \$\frac{\partial f}{\partial x}\$ and \$\frac{\partial f}{\partial y}\$

Detecting Corners

• Claim: the following covariance matrix summarizes the statistics of the gradient

$$C = \begin{bmatrix} \sum f_x^2 & \sum f_x f_y \\ \sum f_x f_y & \sum f_y^2 \end{bmatrix} \qquad f_x = \frac{\partial f}{\partial x}, f_y = \frac{\partial f}{\partial y}$$

Summations over local neighborhoods

Detecting Corners

- Examine behavior of C by testing its effect in simple cases
- Case #1: Single edge in local neighborhood

Case#1: Single Edge

- Let (*a*,*b*) be gradient along edge
- Compute *C* · (*a*,*b*):

$$C \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sum f_x^2 & \sum f_x f_y \\ \sum f_x f_y & \sum f_y^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$= \sum (\nabla f) (\nabla f)^{\mathrm{T}} \begin{bmatrix} a \\ b \end{bmatrix}$$
$$= \sum (\nabla f) \left(\nabla f \cdot \begin{bmatrix} a \\ b \end{bmatrix} \right)$$

Case #1: Single Edge

However, in this simple case, the only nonzero terms are those where ∇f = (a,b)
So, C · (a,b) is just some multiple of (a,b)

Assume there is a corner, with perpendicular gradients (*a*,*b*) and (*c*,*d*)

Case #2: Corner

• What is $C \cdot (a,b)$?

- Since $(a,b) \cdot (c,d) = 0$, the only nonzero terms are those where $\nabla f = (a,b)$
- So, $C \cdot (a,b)$ is again just a multiple of (a,b)

• What is $C \cdot (c,d)$?

- Since $(a,b) \cdot (c,d) = 0$, the only nonzero terms are those where $\nabla f = (c,d)$
- So, $C \cdot (c,d)$ is a multiple of (c,d)

Corner Detection

- Matrix times vector = multiple of vector
- Eigenvectors and eigenvalues!
- In particular, if C has one large eigenvalue, there's an edge
- If C has **two** large eigenvalues, have corner
- Tomasi-Kanade corner detector

Corner Detection Implementation

- 1. Compute image gradient
- 2. For each *m*×*m* neighborhood, compute matrix *C*
- 3. If smaller eigenvalue λ_2 is larger than threshold τ , record a corner
- 4. Nonmaximum suppression: only keep strongest corner in each $m \times m$ window

Corner Detection Results

 Checkerboard with noise

Trucco & Verri

Corner Detection Results

Corner Detection Results

Histogram of λ_2 (smaller eigenvalue)

Corner Detection

- Application: good features for tracking, correspondence, etc.
 - Why are corners better than edges for tracking?
- Other corner detectors
 - Look for curvature in edge detector output
 - Perform color segmentation on neighborhoods
 - Others...

Invariance

Suppose you rotate the image by some angle
 Will you still find the same corners?

• What if you change the brightness?

Scale-Invariant Feature Detection

- Key idea: compute some function *f* over different scales, find extremum
 Common definition of *f*: LoG or DoG
 - Find local minima or maxima over position and scale

Lindeberg et al., 1996

 $f(I_{i_1...i_m}(x,\sigma))$

Slide from Tinne Tuytelaars

 $f(I_{i_1...i_m}(x',\sigma'))$

Normalize: rescale to fixed size

Fitting and Matching

- We've seen low-level detectors
- Next step: using output for higher-level tasks
 Detection/fitting of more complex primitives
 Matching

Detecting Lines

- What is the difference between line detection and edge detection?
 - Edges = local
 - Lines = nonlocal
- Line detection usually performed on the output of an edge detector

Detecting Lines

- Possible approaches:
 - Brute force: enumerate all lines, check if present
 - Hough transform: vote for lines to which detected edges might belong
 - Fitting: given guess for approximate location, refine it
- Second method efficient for finding unknown lines, but not always accurate

Hough Transform

- General idea: transform from image coordinates to parameter space of feature
 - Need parameterized model of features
 - For each pixel, determine all parameter values that might have given rise to that pixel; vote
 - At end, look for peaks in parameter space

- Generic line: y = ax + b
- Parameters: *a* and *b*

1. Initialize table of *buckets*, indexed by *a* and *b*, to zero

- 2. For each detected edge pixel (*x*,*y*):
 - a. Determine all (a,b) such that y = ax+b
 - b. Increment bucket (*a*,*b*)
- 3. Buckets with many votes indicate probable lines

Bucket Selection

• How to select bucket size?

- Too small: poor performance on noisy data
- Too large: poor accuracy, long running times, possibility of false positives
- Large buckets + verification and refinement
 Problems distinguishing nearby lines
- Be smarter at selecting buckets

 Use gradient information to select subset of buckets
 More sensitive to noise

Difficulties with Hough Transform for Lines

Slope / intercept parameterization not ideal

Non-uniform sampling of directions
Can't represent vertical lines

Angle / distance parameterization

Line represented as (r,θ) where x cos θ + y sin θ = r

Angle / Distance Parameterization

 Advantage: uniform parameterization of directions

 Disadvantage: space of all lines passing through a point becomes a sinusoid in (*r*, θ) space

Hough Transform Results

Forsyth & Ponce

Hough Transform Results

Forsyth & Ponce

Hough Transform

• What else can be detected using Hough transform?

• Anything, but *dimensionality* is key

Hough Transform for Circles

- Space of circles has a 3-dimensional parameter space: position (2-d) and radius
- So, each pixel gives rise to 2-d sheet of values in 3-d space

Hough Transform for Circles

- In many cases, can simplify problem by using more information
- Example: using gradient information

 Still need 3-d bucket space, but each pixel only votes for 1-d subset

Hough Transform for Circles – Secants

Simplifying Hough Transforms

Another trick: use prior information

 For example, if looking for circles of a particular size, reduce votes even further

 Output of Hough transform often not accurate enough

• Use as initial guess for fitting

Least-squares minimization

- As before, have to be careful about parameterization
- Simplest line fitting formulas minimize vertical (not perpendicular) point-to-line distance
- Closed-form solution for point-to-line distance, not necessarily true for other curves

Total Least Squares

1. Translate center of mass to origin

Total Least Squares

2. Compute covariance matrix, find eigenvector w. largest eigenvalue

Outliers

- Least squares assumes Gaussian errors
- Outliers: points with extremely low probability of occurrence (according to Gaussian statistics)
 – Can be result of *data association* problems
- Can have strong influence on least squares

Robust Estimation

- Goal: develop parameter estimation methods insensitive to *small* numbers of *large* errors
- General approach: try to give large deviations less weight
- M-estimators: minimize some function other than (y – f(x,a,b,...))²

Least Absolute Value Fitting

• Minimize $\sum_{i} |y_i - f(x_i, a, b, ...)|$ instead of $\sum_{i} (y_i - f(x_i, a, b, ...))^2$

 Points far away from trend get comparatively less influence Example: Constant

For constant function y = a, minimizing Σ(y-a)² gives a = mean
Minimizing Σ|y-a| gives a = median

Doing Robust Fitting

 In general case, nasty function: discontinuous derivative

 Numerical methods (e.g. Nelder-Mead simplex) sometimes work

Iteratively Reweighted Least Squares

 Sometimes-used approximation: convert to iterated weighted least squares

$$\sum_{i} |y_{i} - f(x_{i}, a, b, ...)|$$

$$= \sum_{i} \frac{1}{|y_{i} - f(x_{i}, a, b, ...)|} (y_{i} - f(x_{i}, a, b, ...))^{2}$$

$$= \sum_{i} w_{i} (y_{i} - f(x_{i}, a, b, ...))^{2}$$

with w_i based on previous iteration

Iteratively Reweighted Least Squares

Different options for weights

 Avoid problems with infinities
 Give even less weight to outliers

$$w_{i} = \frac{1}{|y_{i} - f(x_{i}, a, b, ...)|}$$

$$w_{i} = \frac{1}{k + |y_{i} - f(x_{i}, a, b, ...)|}$$

$$w_{i} = \frac{1}{k + (y_{i} - f(x_{i}, a, b, ...))^{2}}$$

$$w_{i} = e^{-k(y_{i} - f(x_{i}, a, b, ...))^{2}}$$

Outlier Detection and Rejection

- Special case of IRWLS: set weight = 0 if outlier,
 1 otherwise
- Detecting outliers: (y_i-f(x_i))² > threshold

 One choice: multiple of mean squared difference
 Better choice: multiple of *median* squared difference
 - Can iterate...
 - As before, not guaranteed to do anything reasonable, tends to work OK if only a few outliers

RANSAC

- RANdom SAmple Consensus: desgined for bad data (in best case, up to 50% outliers)
- Take many random subsets of data
 - Compute least squares fit for each sample
 - See how many points agree: $(y_i f(x_i))^2 < \text{threshold}$
 - Threshold user-specified or estimated from more trials
- At end, use fit that agreed with most points
 Can do one final least squares with all inliers

Feature Descriptors

 Feature matching useful for: Image alignment (e.g., mosaics), 3D reconstruction, motion tracking, object recognition, indexing and database retrieval, robot navigation, etc.

Properties of Feature Descriptors

- Easily computed
- Easily compared (compact, fixed-dimensional)
- Invariant
 - Translation
 - Rotation
 - Scale
 - Change in image brightness
 - Change in perspective?

Rotation Invariance for Feature Descriptors

Rotate window according to dominant orientation – Eigenvector of C corresponding to maximum eigenvalue

[Matthew Brown]

Scale Invariant Feature Transform

- Take 16×16 window around detected feature
- Create histogram of thresholded edge orientations

Full SIFT Descriptor

- Divide 16×16 window into 4×4 grid of cells
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128-dimensional descriptor

Properties of SIFT

- Fast (real-time) and robust descriptor for matching
 - Handles changes in viewpoint (~60° out of plane rotation)
 - Handles significant changes in illumination
 - Lots of code available

