
COS 318: Operating Systems

Virtual Memory Paging

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

  Paging mechanism
  Page replacement algorithms

3

Virtual Memory Paging

  Simple world
  Load entire process into memory. Run it. Exit.

  Problems
  Slow (especially with big processes)
  Wasteful of space (doesn’t use all of its memory all the time)

  Solution
  Demand paging: only bring in pages actually used
  Paging: only keep frequently used pages in memory

  Mechanism:
  Virtual memory maps some to physical pages, some to disk

4

VM Paging Steps

Steps
  Memory reference

(may cause a TLB miss)
  TLB entry invalid triggers a page

fault and VM handler takes over
  Move page from disk to memory
  Update TLB entry w/ pp#, valid bit
  Restart the instruction
  Memory reference again

. . .
subl $20 %esp

movl 8(%esp), %eax
. . .

vp#
v vp#
i vp#
v vp#

v vp#

TLB

pp#
pp#
dp#
pp#

pp#

. . .

v

VM
system

pp# v

fa
ul

t

5

Virtual Memory Issues

  How to switch a process after a fault?
  Need to save state and resume
  Is it the same as an interrupt?

  What to page in?
  Just the faulting page or more?
  Want to know the future…

  What to replace?
  Cache always too small, which page to replace?
  Want to know the future...

6

How Does Page Fault Work?

  User program should not be aware of the page fault
  Fault may have happened in the middle of the

instruction!
  Can we skip the faulting instruction?
  Is a faulting instruction always restartable?

 .
 .
 .

subl $20 %esp
movl 8(%esp), %eax
 .
 .
 .

VM fault handler()
{
 Save states
 .
 .
 .
 iret
}

7

What to Page In?

  Page in the faulting page
  Simplest, but each “page in” has substantial overhead

  Page in more pages each time
  May reduce page faults if the additional pages are used
  Waste space and time if they are not used
  Real systems do some kind of prefetching

  Applications control what to page in
  Some systems support for user-controlled prefetching
  But, many applications do not always know

8

VM Page Replacement

  Things are not always available when you want them
  It is possible that no unused page frame is available
  VM needs to do page replacement

  On a page fault
  If there is an unused frame, get it
  If no unused page frame available,

•  Find a used page frame
•  If it has been modified, write it to disk
•  Invalidate its current PTE and TLB entry

  Load the new page from disk
  Update the faulting PTE and remove its TLB entry
  Restart the faulting instruction

  General data structures
  A list of unused page frames
  A table to map page frames to PID and virtual pages, why?

Page
Replacement

9

Which “Used” Page Frame To Replace?

  Random
  Optimal or MIN algorithm
  NRU (Not Recently Used)
  FIFO (First-In-First-Out)
  FIFO with second chance
  Clock
  LRU (Least Recently Used)
  NFU (Not Frequently Used)
  Aging (approximate LRU)
  Working Set
  WSClock

10

Optimal or MIN

 Algorithm:
  Replace the page that won’t be

used for the longest time
(Know all references in the future)

 Example
  Reference string:
  4 page frames
  6 faults

  Pros
  Optimal solution and can be used as an off-line analysis method

  Cons
  No on-line implementation

1 2 3 4 1 2 5 1 2 3 4 5

11

Revisit TLB and Page Table

  Important bits for paging
  Reference: Set when referencing a location in the page
  Modify: Set when writing to a location in the page

offset

Virtual address

. . .

PPage# ...

PPage# ...

PPage# …

PPage # offset

VPage #

TLB
Hit

Miss Page Table
VPage#
VPage#

VPage#

12

Not Recently Used (NRU)
  Algorithm

  Randomly pick a page from the following (in this order)
•  Not referenced and not modified
•  Not referenced and modified
•  Referenced and not modified
•  Referenced and modified

  Clear reference bits
  Example

  4 page frames
  Reference string
  8 page faults

  Pros
  Implementable

  Cons
  Require scanning through reference bits and modified bits

1 2 3 4 1 2 5 1 2 3 4 5

13

First-In-First-Out (FIFO)

  Algorithm
  Throw out the oldest page

  Example
  4 page frames
  Reference string
  10 page faults

  Pros
  Low-overhead implementation

  Cons
  May replace the heavily used pages

5 3 4 7 9 11 2 1 15 Page
out

Recently
loaded

1 2 3 4 1 2 5 1 2 3 4 5

14

More Frames → Fewer Page Faults?

  Consider the following with 4 page frames
  Algorithm: FIFO replacement
  Reference string:
  10 page faults

  Same string with 3 page frames
  Algorithm: FIFO replacement
  Reference string:
  9 page faults!

  This is so called “Belady’s anomaly” (Belady,
Nelson, Shedler 1969)

1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5

15

FIFO with 2nd Chance

  Algorithm
  Check the reference-bit of the oldest page
  If it is 0, then replace it
  If it is 1, clear the referent-bit, put it to the end of

the list,
and continue searching

  Example
  4 page frames
  Reference string:
  8 page faults

  Pros
  Simple to implement

  Cons
  The worst case may take a long time

5 3 4 7 9 11 2 1 15 Recently
loaded

Page
out

If ref bit = 1

1 2 3 4 1 2 5 1 2 3 4 5

16

Clock

  FIFO clock algorithm
  Hand points to the oldest page
  On a page fault, follow the hand to

inspect pages
  Second chance

  If the reference bit is 1, set it to 0
and advance the hand

  If the reference bit is 0, use it for
replacement

  Compare with the FIFO with 2nd
chance
  What’s the difference?

  What if memory is very large
  Take a long time to go around?

Oldest page

17

Least Recently Used

  Algorithm
  Replace page that hasn’t been used for the longest time

•  Order the pages by time of reference
•  Timestamp for each referenced page

  Example
  4 page frames
  Reference string:
  8 page faults

  Pros
  Good to approximate MIN

  Cons
  Difficult to implement

5 3 4 7 9 11 2 1 15 Recently
loaded

Least
Recently
used

1 2 3 4 1 2 5 1 2 3 4 5

18

Approximation of LRU

  Use CPU ticks
  For each memory reference, store the ticks in its PTE
  Find the page with minimal ticks value to replace

  Use a smaller counter
Most recently used Least recently used

N categories
Pages in order of last reference

LRU

Crude
LRU 2 categories

Pages referenced since
the last page fault

Pages not referenced
since the last page fault

8-bit
count 256 categories 254 255

19

Aging: Not Frequently Used (NFU)
  Algorithm

  Shift reference bits into counters
  Pick the page with the smallest counter to replace

  Old example
  4 page frames
  Reference string:
  8 page faults

  Main difference between NFU and LRU?
  NFU has a short history (counter length)

  How many bits are enough?
  In practice 8 bits are quite good

00000000
00000000

10000000
00000000

10000000
00000000

11000000
00000000

01000000
10000000

11100000
00000000

10100000
01000000

01110000
10000000

01010000
10100000

00111000
01000000

1 2 3 4 1 2 5 1 2 3 4 5

20

Program Behavior (Denning 1968)

  80/20 rule
  > 80% memory references are

within <20% of memory space
  > 80% memory references are

made by < 20% of code
  Spatial locality

  Neighbors are likely to be accessed
  Temporal locality

  The same page is likely to be
accessed again in the near future

Pages in memory

Pa

ge
 fa

ul
ts

21

Working Set

  Main idea (Denning 1968, 1970)
  Define a working set as the set of pages in the most recent K

page references
  Keep the working set in memory will reduce page faults

significantly
  Approximate working set

  The set of pages of a process used in the last T seconds
  An algorithm

  On a page fault, scan through all pages of the process
  If the reference bit is 1, record the current time for the page
  If the reference bit is 0, check the “time of last use,”

•  If the page has not been used within T, replace the page
•  Otherwise, go to the next

  Add the faulting page to the working set

22

WSClock

 Follow the clock hand
  If the reference bit is 1

  Set reference bit to 0
  Set the current time for the page
  Advance the clock hand

  If the reference bit is 0, check “time of last use”
  If the page has been used within δ, go to the next
  If the page has not been used within δ and modify bit is 1

•  Schedule the page for page out and go to the next
  If the page has not been used within δ and modify bit is 0

•  Replace this page

23

Replacement Algorithms

  The algorithms
  Random
  Optimal or MIN algorithm
  NRU (Not Recently Used)
  FIFO (First-In-First-Out)
  FIFO with second chance
  Clock
  LRU (Least Recently Used)
  NFU (Not Frequently Used)
  Aging (approximate LRU)
  Working Set
  WSClock

  Which are your top two?

24

Summary

  VM paging
  Page fault handler
  What to page in
  What to page out

  LRU is good but difficult to implement
  Clock (FIFO with 2nd hand) is considered a good

practical solution
  Working set concept is important

