COS 318: Operating Systems

Virtual Memory Paging

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Today's Topics

Paging mechanism
Page replacement algorithms

Virtual Memory Paging

Simple world
e Load entire process into memory. Run it. EXxit.
Problems
e Slow (especially with big processes)
e \Wasteful of space (doesn’t use all of its memory all the time)

Solution

e Demand paging: only bring in pages actually used

e Paging: only keep frequently used pages in memory
Mechanism:

e Virtual memory maps some to physical pages, some to disk

VM Paging Steps

* VM
: e t
subl $20 %esp w” Sysiem
movl 8(%esp), %eax
A V| VP# | pp# [
%’»Q V| Vp# | Pp# [
”oe v| vp# | pp# [
Steps V| Vp# | pp# . |
Memory reference :
(may cause a TLB miss) v| vp# | pp#
TLB entry invalid triggers a page TLB
fault and VM handler takes over

Move page from disk to memory
Update TLB entry w/ pp#, valid bit
Restart the instruction

@ Memory reference again

Virtual Memory Issues

How to switch a process after a fault?
e Need to save state and resume
e Is it the same as an interrupt?

What to page in?
e Just the faulting page or more?
e \Want to know the future...

What to replace?
e Cache always too small, which page to replace?
e \Want to know the future...

How Does Page Fault Work™?

Save states

subl $20 %esp
movl 8 (%esp)y x

iret

/‘ VM fault handler ()
{

User program should not be aware of the page fault

Fault may have happened in the middle of the
Instruction!

Can we skip the faulting instruction?
Is a faulting instruction always restartable?

What to Page In?

Page in the faulting page
e Simplest, but each “page in” has substantial overhead

Page in more pages each time

e May reduce page faults if the additional pages are used
e \Waste space and time if they are not used

e Real systems do some kind of prefetching

Applications control what to page In
e Some systems support for user-controlled prefetching
e But, many applications do not always know

VM Page Replacement

Things are not always available when you want them
e It is possible that no unused page frame is available
e VM needs to do page replacement

On a page fault
e If there is an unused frame, get it
e If no unused page frame available,)
 Find a used page frame _ Page
- If it has been modified, write it to disk Replacement
 Invalidate its current PTE and TLB entry_’

e Load the new page from disk
e Update the faulting PTE and remove its TLB entry
e Restart the faulting instruction

General data structures

e A list of unused page frames
e A table to map page frames to PID and virtual pages, why?

Which “Used” Page Frame To Replace?

Random

Optimal or MIN algorithm
NRU (Not Recently Used)
FIFO (First-In-First-Out)
FIFO with second chance
Clock

LRU (Least Recently Used)
NFU (Not Frequently Used)
Aging (approximate LRU)
Working Set

WSClock

Optimal or MIN

Algorithm:

e Replace the page that won't be
used for the longest time
(Know all references in the future)

Example

e Reference string: 111211311411 2 1511 2 3145
e 4 page frames

e 6 faults

Pros
e Optimal solution and can be used as an off-line analysis method

Cons
e No on-line implementation

10

Revisit TLB and Page Table

Virtual address

VPage # ‘ offset

Miss | Page Table

[
|
l
|
I
|
I
|
|
\

PPage # ‘ offset

Important bits for paging
e Reference: Set when referencing a location in the page

@ e Modify: Set when writing to a location in the page
> o 11

Not Recently Used (NRU)

Algorithm
e Randomly pick a page from the following (in this order)
* Not referenced and not modified
* Not referenced and modified
« Referenced and not modified
» Referenced and modified
e Clear reference bits
Example
e 4 page frames

e Reference string 1121311411 2 I511 2131415
e 8 page faults

Pros
e Implementable

Cons
e Require scanning through reference bits and modified bits

12

First-In-First-Out (FIFO)

Page Recently
out loaded

Algorithm

e Throw out the oldest page
Example

e 4 page frames

e Reference string 11211311411 2 I5111112113114115
e 10 page faults

Pros

e Low-overhead implementation
Cons

e May replace the heavily used pages

13

More Frames — Fewer Page Faults?

Consider the following with 4 page frames
e Algorithm: FIFO replacement

o Reference string: [11[21[3][a]1 2 [51[11[2l[3][4]15
e 10 page faults

Same string with 3 page frames
e Algorithm: FIFO replacement

e Reference string:
e 9 page faults!

1112][3[[4||1](2] 5] 1 2|3[[4]| 5

This is so called “Belady’s anomaly” (Belady,
Nelson, Shedler 1969)

14

FIFO with 2nd Chance

— |f ref bit = 1

Page | Recently
out —5(314|7|9]11]2]1 (15 loaded

Algorithm

e Check the reference-bit of the oldest page
e Ifitis O, then replace it

e Ifitis 1, clear the referent-bit, put it to the end of
the list,

and continue searching

Example
e 4 page frames

e Reference string: 11211311411 2 |51 1 21311415
e 38 page faults

Pros
e Simple to implement
Cons
@ e The worst case may take a long time

15

Clock

FIFO clock algorithm

e Hand points to the oldest page

e On a page fault, follow the hand to
Inspect pages L‘Oldest page]

Second chance

e If the reference bitis 1, setitto O
and advance the hand

e If the reference bitis 0, use it for /
replacement

Compare with the FIFO with 2nd
chance
e \What's the difference?

What if memory is very large
e Take a long time to go around?

16

Least Recently Used

Least Recentl
Recently <53 |4|7[9[11]2]1 |15¢ Y
loaded
used
Algorithm

e Replace page that hasn’t been used for the longest time
« Order the pages by time of reference
» Timestamp for each referenced page

Example
e 4 page frames

e Reference string: 11211311411 2 1511 213114115
e 8 page faults

Pros
e Good to approximate MIN

Cons
,, e Difficult to implement 17

Approximation of LRU

Use CPU ticks

e For each memory reference, store the ticks in its PTE
e Find the page with minimal ticks value to replace

Use a smaller counter

Most recently used Least recently used

LRU N categories
Pages 1n order of last reference

Crude

[RU | | 2 categories
Pages referenced since ~ Pages not referenced
the last page fault since the last page fault
8-bit :
254255 256 categories
count

18

Aging: Not Frequently Used (NFU)

Algorithm
e Shift reference bits into counters
e Pick the page with the smallest counter to replace

00000000 00000000 10000000 01000000 10100000
00000000 10000000 01000000 10100000 01010000
10000000 11000000 11100000 01110000 00111000
00000000 00000000 00000000 10000000 01000000

Old example

e 4 page frames

e Reference string: 11121131{411 2 (511 2134l 5

e 8 page faults

Main difference between NFU and LRU?
e NFU has a short history (counter length)

How many bits are enough?

e In practice 8 bits are quite good
19

Program Behavior (Denning 1968)

80/20 rule

e > 80% memory references are
within <20% of memory space

e > 80% memory references are
made by < 20% of code

Spatial locality
e Neighbors are likely to be accessed

Temporal locality

e The same page is likely to be
accessed again in the near future

Page faults

Pages in memory

20

Working Set

Main idea (Denning 1968, 1970)

e Define a working set as the set of pages in the most recent K
page references

e Keep the working set in memory will reduce page faults
significantly
Approximate working set
e The set of pages of a process used in the last T seconds

An algorithm
e On a page fault, scan through all pages of the process
e If the reference bit is 1, record the current time for the page
e If the reference bit is 0, check the “time of last use,”

* |If the page has not been used within T, replace the page
« Otherwise, go to the next

e Add the faulting page to the working set

21

WSClock

Follow the clock hand

If the reference bit is 1

e Set reference bit to O

e Set the current time for the page
e Advance the clock hand

If the reference bit is 0, check “time of last use”

e If the page has been used within §, go to the next

e If the page has not been used within & and modify bit is 1
« Schedule the page for page out and go to the next

e If the page has not been used within & and modify bit is 0
* Replace this page

22

Replacement Algorithms

The algorithms

Random

Optimal or MIN algorithm
NRU (Not Recently Used)
FIFO (First-In-First-Out)
FIFO with second chance
Clock

LRU (Least Recently Used)
NFU (Not Frequently Used)
Aging (approximate LRU)
Working Set

e WSClock

Which are your top two?

23

Summary

VM paging

e Page fault handler
e \What to page in

e \What to page out

LRU is good but difficult to implement

Clock (FIFO with 2" hand) is considered a good
practical solution

Working set concept is important

24

