
COS 318: Operating Systems

Overview

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Logistics

  Precepts:
  Tue, Wed: TBD, 105 CS building

  Design review:
  9/28 during 6-10pm, 010 Friends center

  Project 1 due:
  10/5 at 11:59pm

  Reminder:
  Subscribe to the cos318 mailing list today!

3

Today

  Overview of OS structure
  Overview of OS components

4

Hardware of A Typical Computer

CPU

Chipset Memory
I/O bus

CPU . . .

Network

ROM

Computing machinery
Analytical Engine (~1850) Charles Babbage

ENIAC (~1946) Eckert & Mauchly, UPenn Johnniac (~1953) von Neumann, IAS

6

A Typical Computer System

Memory CPU

CPU

. . .

OS
Apps
Data

Network

Application

Operating System

ROM

BIOS

7

Interrupts

  Raised by external events
  Interrupt handler is in the

kernel
  Switch to another process
  Overlap I/O with CPU
  …

  Eventually resume the
interrupted process

0:
1:
…

i:
i+1:
…

N:

Interrupt
handler

8

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

9

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

10

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Written by elves
•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved”
when program is loaded

11

Pipeline of Creating An Executable File

  gcc can compile, assemble, and link together
  Compiler (part of gcc) compiles a program into assembly
  Assembler compiles assembly code into relocatable object file
  Linker links object files into an executable
  For more information:

  Read man page of a.out, elf, ld, and nm
  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

12

Execution (Run An Application)

  On Unix, “loader” does the job
  Read an executable file
  Layout the code, data, heap and stack
  Dynamically link to shared libraries
  Prepare for the OS kernel to run the application

a.out loader *.o, *.a ld Application

Shared
library

13

What’s An Application?

  Four segments
  Code/Text – instructions
  Data – initialized global

variables
  Stack
  Heap

  Why?
  Separate code and data
  Stack and heap go

towards each other

Stack

Heap

Initialized data

Code

2n -1

0

14

Responsibilities

  Stack
  Layout by compiler
  Allocate/deallocate by process creation (fork) and termination
  Names are relative off of stack pointer and entirely local

  Heap
  Linker and loader say the starting address
  Allocate/deallocate by library calls such as malloc() and free()
  Application program use the library calls to manage

  Global data/code
  Compiler allocate statically
  Compiler emit names and symbolic references
  Linker translate references and relocate addresses
  Loader finally lay them out in memory

15

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

16

OS Service Examples

  Examples that are not provided at user level
  System calls: file open, close, read and write
  Control the CPU so that users won’t stuck by running

•  while (1) ;

  Protection:
•  Keep user programs from crashing OS
•  Keep user programs from crashing each other

  System calls are typically traps or exceptions
  System calls are implemented in the kernel
  When finishing the service, a system returns to the user code

17

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

18

Applications

Software “Onion” Layers

Libraries

OS Services
Device

Driver

Kernel

User and Kernel
boundary

HW

19

Processor Management

  Goals
  Overlap between I/O and

computation
  Time sharing
  Multiple CPU allocations

  Issues
  Do not waste CPU resources
  Synchronization and mutual

exclusion
  Fairness and deadlock free

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

20

Memory Management

  Goals
  Support programs to run
  Allocation and management
  Transfers from and to

secondary storage
  Issues

  Efficiency & convenience
  Fairness
  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

21

I/O Device Management

  Goals
  Interactions between

devices and applications
  Ability to plug in new

devices
  Issues

  Efficiency
  Fairness
  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

22

File System
  Goals:

  Manage disk blocks
  Map between files and disk

blocks
  A typical file system

  Open a file with
authentication

  Read/write data in files
  Close a file

  Issues
  Reliability
  Safety
  Efficiency
  Manageability

User 1 User n . . .

File system services

File File . . .

23

Window Systems

  Goals
  Interacting with a user
  Interfaces to examine and

manage apps and the system
  Issues

  Direct inputs from keyboard and
mouse

  Display output from applications
and systems

  Labor of division
•  All in the kernel (Windows)
•  All at user level
•  Split between user and kernel (Unix)

24

Bootstrap

  Power up a computer
  Processor reset

  Set to known state
  Jump to ROM code (BIOS is

in ROM)
  Load in the boot loader from

stable storage
  Jump to the boot loader
  Load the rest of the operating

system
  Initialize and run
  Question: Can BIOS be on disk?

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

. . .

Boot
loader

25

Ways to Develop An Operating System

  A hardware simulator
  A virtual machine
  A good kernel debugger

  When OS crashes, always goes to the debugger
  Debugging over the network

  Hire some smart programmers

1972 1998

