

Disabling Interrupts for mutual exclusion Hardware support for mutual exclusion Competitive spinning


```
Acquire() {
    disable interrupts;
}

Release() {
    enable interrupts;
}

Issues with this approach?
```

```
    ◆ Use a lock variable, and impose mutual exclusion via interrupts only on testing and setting that variable
    Acquire(lock) {
        disable interrupts;
        while (lock.value != FREE) {
            enable interrupts;
            disable interrupts;
            disable interrupts;
            }
        lock.value = BUSY;
        enable interrupts;
        }
        Does this fix the "wait forever" problem?
```

Once more, with queuing ...

```
Acquire(lock) {
    disable interrupts;
    while (lock.value == BUSY)
    {
        enqueue me for lock;
        Yield();
    }
    lock.value = BUSY;
    enable interrupts;
    }
}
Release(lock) {
    disable interrupts;
    if (anyone in queue) {
        dequeue a thread;
        make it ready;
    }
    lock.value = FREE;
    enable interrupts;
    }
}
```

- What's going on here?
- When should acquirer re-enable interrupts?
 - Just before enqueue?
 - Just after enqueue and before Yield()?

9

A Simple Solution with Test&Set

- Define TAS(lock)
 - If successfully set, return 1;
 - Otherwise, return 0;
- Any issues with the following solution?

```
Acquire(lock) {
  while (TAS(lock.value) == 1)
  ;
}

Release(lock) {
  lock.value = 0;
}
```


11

Atomic Read-Modify-Write Instructions

- Test&Set
 - Read location, set its value to 1, return value read
- Exchange (xchg, x86 architecture)
 - Swap register and memory
 - Atomic (even without LOCK)
- Fetch&Add or Fetch&Op
 - Atomic instructions for large shared memory multiprocessor systems
- Load linked and conditional store
 - Read value in one instruction (load linked)
 - Do some operations;
 - When store, check if value has been modified since load linked. If not, ok; otherwise, jump back to start

10

What About This Solution?

```
Release(lock) {
Acquire(lock) {
                                     while (TAS(lock.guard)==1)
  while (TAS(lock.guard) == 1)
                                    if (anyone in queue) {
 if (lock.value) {
                                      dequeue a thread;
   enqueue the thread;
                                      make it ready;
   block and lock.guard = 0;
                                    } else
 } else {
                                      lock.value = 0;
   lock.value = 1;
                                    lock.guard = 0;
   lock.guard = 0;
```

◆ How long does the "busy wait" take?

12

Example: Protect a Shared Variable

Acquire(lock) count++; Release(lock)

- Acquire(mutex) system call
 - Pushing parameter, sys call # onto stack
 - Generating trap/interrupt to enter kernel
 - Jump to appropriate function in kernel
 - Verify process passed in valid pointer to mutex
 - Minimal spinning
 - Block and unblock process if needed
 - Get the lock
- Executing "count++;"
- Release(mutex) system call

Block and Unblock System Calls

Block(lock)

- Spin on lock.guard
- Save the context to TCB
- Enqueue TCB to lock.q
- Clear lock.guard
- Call scheduler

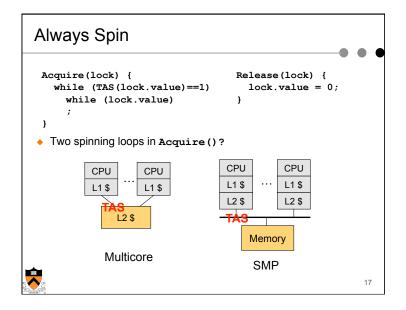
Unblock(lock)

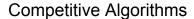
- Spin on lock.guard
- Dequeue a TCB from lock.q
- Put TCB in ready queue
- Clear lock.guard

15

Available Primitives and Operations

- Test-and-set
 - Works at either user or kernel level
- System calls for block/unblock
 - Block takes some token and goes to sleep
 - Unblock "wakes up" a waiter on token



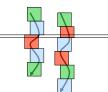

14

Always Block

What are the issues with this approach?

 An algorithm is c-competitive if for every input sequence σ

$$C_A(\sigma) \le c \times C_{opt}(\sigma) + k$$


- c is a constant
- \bullet $\, \text{C}_{\text{A}}\!(\sigma)$ is the cost incurred by algorithm A in processing σ
- • $C_{opt}(\sigma)$ is the cost incurred by the optimal algorithm in processing σ
- We want have c to be as small as possible
- Deterministic and randomized competitive algorithms

19

Optimal Algorithms

- What is the optimal solution to spin vs. block?
 - Know the future
 - Exactly when to spin and when to block
- But, we don't know the future
 - There is no online optimal algorithm

- Offline optimal algorithm
 - Afterwards, derive exactly when to block or spin ("what if")
 - Useful to compare against online algorithms

18

Constant Competitive Algorithms

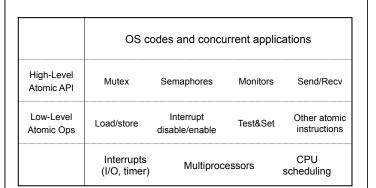
```
Acquire(lock, N) {
  int i;

while (!TAS(lock.value)) {
  i = N;
  while (!lock.value && i)
   i--;

  if (!i)
      Block(lock);
  }
}
```

- Spin up to N times if the lock is held by another thread
- If the lock is still held after spinning N times, block
- If spinning N times is equal to the context-switch time, what is the competitive factor of the algorithm?

Approximate Optimal Online Algorithms


- Main idea
 - Use past to predict future
- Approach
 - Random walk
 - Decrement N by a unit if the last Acquire() blocked
 - Increment N by a unit if the last Acquire() didn't block
 - Recompute N each time for each Acquire() based on some lock-waiting distribution for each lock
- ♦ Theoretical results $E C_A(\sigma(P)) \le (e/(e-1)) \times E C_{opt}(\sigma(P))$

The competitive factor is about 1.58.

21

The Big Picture

23

Empirical Results

			/ \				/ '
	Block	Spin	Fixed C/2	Fixed C	Opt Online	3-samples	R-walk
Nub (2h)	1.943	2.962	1.503	1.559	1.078	1.225	1.093
Taos (24h)	1.715	3.366	1.492	1.757	1.141	1.212	1.213
Taos (M2+)	1.776	3.535	1.483	1.750	1.106	1.177	1.160
Taos (Regsim)	1.578	3.293	1.499	1.748	1.161	1.260	1.268
Ivy (100m)	5.171	2.298	1.341	1.438	1.133	1.212	1.167
Ivy (18h)	7.243	1.562	1.274	1.233	1.109	1.233	1.141
Galaxy	2.897	2.667	1.419	1.740	1.237	1.390	1.693
Hanoi	2.997	2.976	1.418	1.726	1.200	1.366	1.642
Regsim	4.675	1.302	1.423	1.374	1.183	1.393	1.366

Table 1: Synchronization costs for each program relative to the optimal off-line algorithm

	Max spins	Elapsed time (seconds)	Improvement
Always-block	N/A	10529.5	0.0%
Always-spin	N/A	8256.3	21.5%
Fixed-spin	100	9108.0	13.5%
	200	8000.0	24.0%
Opt-known	1008	7881.4	25.1%
Opt-approx	1008	8171.2	22.3%
3-samples	1008	8011.6	23.9%
Random-walk	1008	7929.7	24.7%

A. Karlin, K. Li, M. Manasse, and S. Owicki, "Empirical Studies of Competitive Spinning for a Shared-Memory Multiprocessor," Proceedings of the 13th ACM Symposium on Operating Systems Principle, 1991.

Table 3: Elapsed times of Regsim using different spinning strategies.

22

Summary

- Disabling interrupts for mutex
 - There are many issues
 - When made to work, works for only uniprocessors
- Atomic instruction support for mutex
 - · Atomic load and stores are not good enough
 - Test&set and other instructions are the way to go
- Competitive spinning
 - . Spin at the user level most of the time
 - Make no system calls in the absence of contention
 - Have more threads than processors

24