
COS 318: Operating Systems

Introduction

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cs318/)

2

Today

  Administrative Issues
  What is operating system?
  Why study operating systems?
  What is in COS318

3

Help

  Instructors
  Kai Li, 321 CS Building, li@cs.princeton.edu

Office hours: Tue 3-5pm
  Several faculty members to give lectures

  Teaching Assistants
  Nick Johnson (Projects 1-5)
  Shi Li (Projects 1-5)
  Lars A. Bongo (Final project)

  Information
  Website: http://www.cs.princeton.edu/courses/cos318
  Subscribe to cos318@lists.cs.princeton.edu

4

Resolve “TBD”

  Precept
  Time: Tue and Wed 8:30pm – 9:30pm
  Location: default is this room

  Special tutorial on assembly programming and kernel
debugging
  9/21: 7:30-8:30pm

  Design review
  Monday evening (signup sheet)

5

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS432: Information Security
  COS471: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

6

What Is Operating System?

  Software between applications and hardware
  Make finite resources “infinite”
  Provide protection and security

Hardware

Operating System

vi gcc Browser DVD Player

7

What Do Operating Systems Do?

  System construction
  Raw hardware devices are not usable
  Make hardware usable
  Make unreliable components reliable

  Protection
  Simple OS is inefficient
  Enable to run multiple applications safely
  Mechanisms to prevent applications from crashing a system?

  Resource management
  Resources are always limited
  Make finite CPU, memory and I/O “infinite”
  Make resource allocation fair

8

Some Examples

  System example
  What if a user tries to access disk blocks?
  What if a network link is noisy

  Protection example
  What if a program starts randomly accessing memory?
  What if a user tries to push the system limit?

 int main() {
 while(1)
 fork();
 }

  Resource management example
  What if many programs are running infinite loops?

 while (1);

9

A Typical Academic Computer (1988 vs. 2008)

1988 2008 Ratio

Intel CPU transistors 0.5M 1.9B ~4000x

Intel CPU core x clock 10Mhz 4×2.66Ghz ~1000x

DRAM 2MB 16GB 8000x

Disk 40MB 1TB 25,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $3K 1/10x

$/Mhz $30,000/10 $3,000/10,000 1/10,000x

10

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

  Performance/Price doubles every 18 months
  100x per decade
  Progress in next 18 months

 = ALL previous progress
  New storage = sum of all old storage (ever)
  New processing = sum of all old processing.

15 years ago

11

Phase 1: Hardware Expensive, Human Cheap

  User at console, OS as subroutine library
  Batch monitor (no protection): load, run, print
  Development

  Data channels, interrupts; overlap I/O and CPU
  Direct Memory Access (DMA)
  Memory protection: keep bugs to individual programs
  Multics: designed in 1963 and run in 1969

  Assumption: No bad people. No bad programs. Minimum
interactions

hardware Hardware

Application
OS

12

Phase 2: Hardware Cheap, Human Expensive

  Use cheap terminals to share a computer
  Time-sharing OS
  Unix enters the mainstream
  Problems: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

13

Phase 3: HW Cheaper, Human More Expensive

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >100M unites per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

14

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle

  OS are specialized
  Embedded OS
  Specially configured general-

purpose OS

15

Now: Multiple Processors per Machine

  Multiprocessors
  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Multicomputers

  Supercomputer with many CPUs and high-
speed communication

  Specialized OS with special message-
passing support

  Clusters
  A network of PCs
  Commodity OS

16

Trend: Multiple “Cores” per Processor
  Multicore or Manycore transition

  Intel and AMD have released 4-core CPUs
  SUN’s Niagara processor has 8-cores
  Azul packed 24-cores onto the same chip
  Intel has a TFlop-chip with 80 cores

  Accelerated need for software support
  OS support for manycores
  Parallel programming of applications

17

Trend: Datacenter as A Computer

  Cloud computing
  Hosting data in the cloud
  Software as services
  Examples:

•  Google, Microsoft, Salesforce,
Yahoo, …

  Utility computing
  Pay as you go for computing resources
  Outsourced warehouse-scale hardware and software
  Examples:

•  Amazon, Nirvanix

18

Why Study OS?

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power”

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Real OS is huge and impossible to read everything, but building a

small OS will go a long way

19

What Is in COS 318?

  Methodology
  Lectures with discussions
  Readings with topics
  Six projects to build a small and real OS

  Covered concepts
  Operating system structure

•  Processes, threads, system calls and virtual machine monitor
  Synchronization

•  Mutex, semaphores and monitors
  I/O subsystems

•  Device drivers, IPC, and introduction to networking
  Virtual memory

•  Address spaces and paging
  Storage system

•  Disks and file system

20

Materials

  Textbook
  Modern Operating Systems, 3rd Edition, Andrew S.

Tanenbaum
  Lecture notes

  Available on website
  Precept notes

  Available on website
  Other resources – on website

21

Exam, Reading, Participation and Grading

  Grading (not curved)
  First 5 projects: 50% with extra points
  Midterm: 20%
  Final project or final exam 20%
  Reading & participation 10%

  Midterm Exam
  Test lecture materials and projects
  Tentatively scheduled on Thursday of the midterm week

  Reading assignments
  Submit your reading notes BEFORE each lecture
  Grading (3: excellent, 2: good, 1: poor, 0: none)

  Participation
  Signup sheet at each lecture

22

The First 5 Projects

  Projects
  Bootup (150-300 lines)
  Non-preemptive kernel (200-250 lines)
  Preemptive kernel (100-150 lines)
  Interprocess communication and driver (300-350 lines)
  Virtual memory (300-450 lines)

  How
  Pair up with a partner, will change after 3 projects
  Each project takes two weeks
  Design review at the end of week one
  All projects due Mondays 11:59pm

  The Lab
  Linux cluster in 010 Friends Center, a good place to be
  You can setup your own Linux PC to do projects

23

Project Grading

  Design Review
  A signup sheet for making appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction if missing the appointment

  Project completion
  10 points for each project
  Extra points available

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

24

Final Project

  A simple file system
  Grading (20 points)
  Do it alone
  Due on Dean’s date (~3 weeks)

25

Things To Do

 Do not put your code on the web
  Other schools are using similar projects

  For today’s material:
  Read MOS 1.1-1.3

  For next time
  Read MOS 1.4-1.5

  Now: Pair up and fill out the form!

