
COS 318: Operating Systems

Introduction

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cs318/)

2

Today

  Administrative Issues
  What is operating system?
  Why study operating systems?
  What is in COS318

3

Help

  Instructors
  Kai Li, 321 CS Building, li@cs.princeton.edu

Office hours: Tue 3-5pm
  Several faculty members to give lectures

  Teaching Assistants
  Nick Johnson (Projects 1-5)
  Shi Li (Projects 1-5)
  Lars A. Bongo (Final project)

  Information
  Website: http://www.cs.princeton.edu/courses/cos318
  Subscribe to cos318@lists.cs.princeton.edu

4

Resolve “TBD”

  Precept
  Time: Tue and Wed 8:30pm – 9:30pm
  Location: default is this room

  Special tutorial on assembly programming and kernel
debugging
  9/21: 7:30-8:30pm

  Design review
  Monday evening (signup sheet)

5

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS432: Information Security
  COS471: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

6

What Is Operating System?

  Software between applications and hardware
  Make finite resources “infinite”
  Provide protection and security

Hardware

Operating System

vi gcc Browser DVD Player

7

What Do Operating Systems Do?

  System construction
  Raw hardware devices are not usable
  Make hardware usable
  Make unreliable components reliable

  Protection
  Simple OS is inefficient
  Enable to run multiple applications safely
  Mechanisms to prevent applications from crashing a system?

  Resource management
  Resources are always limited
  Make finite CPU, memory and I/O “infinite”
  Make resource allocation fair

8

Some Examples

  System example
  What if a user tries to access disk blocks?
  What if a network link is noisy

  Protection example
  What if a program starts randomly accessing memory?
  What if a user tries to push the system limit?

 int main() {
 while(1)
 fork();
 }

  Resource management example
  What if many programs are running infinite loops?

 while (1);

9

A Typical Academic Computer (1988 vs. 2008)

1988 2008 Ratio

Intel CPU transistors 0.5M 1.9B ~4000x

Intel CPU core x clock 10Mhz 4×2.66Ghz ~1000x

DRAM 2MB 16GB 8000x

Disk 40MB 1TB 25,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $3K 1/10x

$/Mhz $30,000/10 $3,000/10,000 1/10,000x

10

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

  Performance/Price doubles every 18 months
  100x per decade
  Progress in next 18 months

 = ALL previous progress
  New storage = sum of all old storage (ever)
  New processing = sum of all old processing.

15 years ago

11

Phase 1: Hardware Expensive, Human Cheap

  User at console, OS as subroutine library
  Batch monitor (no protection): load, run, print
  Development

  Data channels, interrupts; overlap I/O and CPU
  Direct Memory Access (DMA)
  Memory protection: keep bugs to individual programs
  Multics: designed in 1963 and run in 1969

  Assumption: No bad people. No bad programs. Minimum
interactions

hardware Hardware

Application
OS

12

Phase 2: Hardware Cheap, Human Expensive

  Use cheap terminals to share a computer
  Time-sharing OS
  Unix enters the mainstream
  Problems: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

13

Phase 3: HW Cheaper, Human More Expensive

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >100M unites per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

14

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle

  OS are specialized
  Embedded OS
  Specially configured general-

purpose OS

15

Now: Multiple Processors per Machine

  Multiprocessors
  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Multicomputers

  Supercomputer with many CPUs and high-
speed communication

  Specialized OS with special message-
passing support

  Clusters
  A network of PCs
  Commodity OS

16

Trend: Multiple “Cores” per Processor
  Multicore or Manycore transition

  Intel and AMD have released 4-core CPUs
  SUN’s Niagara processor has 8-cores
  Azul packed 24-cores onto the same chip
  Intel has a TFlop-chip with 80 cores

  Accelerated need for software support
  OS support for manycores
  Parallel programming of applications

17

Trend: Datacenter as A Computer

  Cloud computing
  Hosting data in the cloud
  Software as services
  Examples:

•  Google, Microsoft, Salesforce,
Yahoo, …

  Utility computing
  Pay as you go for computing resources
  Outsourced warehouse-scale hardware and software
  Examples:

•  Amazon, Nirvanix

18

Why Study OS?

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power”

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Real OS is huge and impossible to read everything, but building a

small OS will go a long way

19

What Is in COS 318?

  Methodology
  Lectures with discussions
  Readings with topics
  Six projects to build a small and real OS

  Covered concepts
  Operating system structure

•  Processes, threads, system calls and virtual machine monitor
  Synchronization

•  Mutex, semaphores and monitors
  I/O subsystems

•  Device drivers, IPC, and introduction to networking
  Virtual memory

•  Address spaces and paging
  Storage system

•  Disks and file system

20

Materials

  Textbook
  Modern Operating Systems, 3rd Edition, Andrew S.

Tanenbaum
  Lecture notes

  Available on website
  Precept notes

  Available on website
  Other resources – on website

21

Exam, Reading, Participation and Grading

  Grading (not curved)
  First 5 projects: 50% with extra points
  Midterm: 20%
  Final project or final exam 20%
  Reading & participation 10%

  Midterm Exam
  Test lecture materials and projects
  Tentatively scheduled on Thursday of the midterm week

  Reading assignments
  Submit your reading notes BEFORE each lecture
  Grading (3: excellent, 2: good, 1: poor, 0: none)

  Participation
  Signup sheet at each lecture

22

The First 5 Projects

  Projects
  Bootup (150-300 lines)
  Non-preemptive kernel (200-250 lines)
  Preemptive kernel (100-150 lines)
  Interprocess communication and driver (300-350 lines)
  Virtual memory (300-450 lines)

  How
  Pair up with a partner, will change after 3 projects
  Each project takes two weeks
  Design review at the end of week one
  All projects due Mondays 11:59pm

  The Lab
  Linux cluster in 010 Friends Center, a good place to be
  You can setup your own Linux PC to do projects

23

Project Grading

  Design Review
  A signup sheet for making appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction if missing the appointment

  Project completion
  10 points for each project
  Extra points available

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

24

Final Project

  A simple file system
  Grading (20 points)
  Do it alone
  Due on Dean’s date (~3 weeks)

25

Things To Do

 Do not put your code on the web
  Other schools are using similar projects

  For today’s material:
  Read MOS 1.1-1.3

  For next time
  Read MOS 1.4-1.5

  Now: Pair up and fill out the form!

