COS 318: Operating Systems

Introduction

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cs318/)

Today

Administrative Issues

What is operating system?
Why study operating systems?
What is in COS318

glﬂ

Help

Instructors

e Kai Li, 321 CS Building, li@cs.princeton.edu
Office hours: Tue 3-5pm

e Several faculty members to give lectures
Teaching Assistants

e Nick Johnson (Projects 1-5)

e Shi Li (Projects 1-5)

e Lars A. Bongo (Final project)
Information

e Website: http://www.cs.princeton.edu/courses/cos318
e Subscribe to cos318@lists.cs.princeton.edu

Resolve “TBD”

Precept

e Time: Tue and Wed 8:30pm — 9:30pm

e Location: default is this room

Special tutorial on assembly programming and kernel
debugging

e 9/21: 7:30-8:30pm

Design review

e Monday evening (signup sheet)

COS318 in Systems Course Sequence

Prerequisites
e COS 217: Introduction to Programming Systems
e COS 226: Algorithms and Data Structures

300-400 courses in systems
e COS318: Operating Systems
C0OS320: Compiler Techniques
COS333: Advanced Programming Techniques
COS432: Information Security
COS471. Computer Architecture
Courses needing COS318
e COS 461: Computer Networks
e COS 518: Advanced Operating Systems
e COS 561: Advanced Computer Networks

gtﬂ

What Is Operating System?

vi gcc Browser DVD Player

Operating System

Hardware

Software between applications and hardware
Make finite resources “infinite”
Provide protection and security

What Do Operating Systems Do?

System construction
e Raw hardware devices are not usable
e Make hardware usable
e Make unreliable components reliable

Protection
e Simple OS is inefficient
e Enable to run multiple applications safely
e Mechanisms to prevent applications from crashing a system?

Resource management

e Resources are always limited
e Make finite CPU, memory and I/O “infinite”
e Make resource allocation fair

Some Examples

System example

e What if a user tries to access disk blocks?
e What if a network link is noisy

Protection example

e What if a program starts randomly accessing memory?

e \What if a user tries to push the system limit?
iInt main() {
while(1)
fork();
}

Resource management example

e \What if many programs are running infinite loops?
while (1) ;

5\‘3

A Typical Academic Computer (1988 vs. 2008)

e
1988 2008 Ratio
Intel CPU transistors 0.5M 1.9B ~4000x
Intel CPU core x clock 10Mhz 4x2.66Ghz ~1000x
DRAM 2MB 16GB 8000x
Disk 40MB 1TB 25,000x
Network BW 10Mbits/sec 10GBits/sec 1000x
Address bits 32 64 2X
Users/machine 10s <1 >10x
$/machine $30K $3K 1/10x
$/Mhz $30,000/10 $3,000/10,000 1/10,000x

- Brg

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

¢+ Performance/Price doubles every 18 months
+ 100x per decade

¢ Progress in next 18 months
= ALL previous progress
e New storage = sum of all old storage (ever)
e New processing = sum of all old processing.

Phase 1: Hardware Expensive, Human Cheap
[

User at console, OS as subroutine library
Batch monitor (no protection): load, run, print

Development

e Data channels, interrupts; overlap 1/0 and CPU

e Direct Memory Access (DMA)

e Memory protection: keep bugs to individual programs
e Multics: designed in 1963 and run in 1969

Assumption: No bad people. No bad programs. Minimum
interactions

Application

OS

—_— =

Hardware

11

Phase 2: Hardware Cheap, Human Expensive
© e

Use cheap terminals to share a computer
Time-sharing OS

Unix enters the mainstream

Problems: thrashing as the number of users increases

»» ®

— \ /
App1 | App2 e App2

Time-sharing OS

—_— Hardware /_;

@ 12

Emﬂ

Phase 3: HW Cheaper, Human More Expensive

¢ Personal computer
e Altos OS, Ethernet, Bitmap display, laser printer

e Pop-menu window interface, email, publishing SW,
spreadsheet, FTP, Telnet

e Eventually >100M unites per year
+ PC operating system

e Memory protection

e Multiprogramming

e Networking

- Brg

13

Etﬂ

Now: > 1 Machines per User

¢ Pervasive computers
e \Wearable computers
e Communication devices
e Entertainment equipment
e Computerized venhicle

¢ OS are specialized

e Embedded OS

e Specially configured general-
purpose OS

- Brg

14

Emﬂ

Now: Multiple Processors per Machine

¢ Multiprocessors
e SMP: Symmetric MultiProcessor

e ccNUMA: Cache-Coherent Non-Uniform
Memory Access

e General-purpose, single-image OS with
multiproccesor support
¢ Multicomputers

e Supercomputer with many CPUs and high-
speed communication

e Specialized OS with special message-
passing support
¢ Clusters
e A network of PCs
e Commodity OS

- Brg

G

Trend: Multiple “Cores” per Processor

¢ Multicore or Manycore transition
e Intel and AMD have released 4-core CPUs
e SUN’s Niagara processor has 8-cores
e Azul packed 24-cores onto the same chip
e Intel has a TFlop-chip with 80 cores

¢ Accelerated need for software support

e OS support for manycores
e Parallel programming of applications

Scalable On DieFabric

IA IA IA IA IA IA IA

Core Core Core Core Core Core Core @ Core High
BW.
Membory,

I/E

Eixed

Function Last Level Cache
Units

A A A A A A A A
Core | Core | Core @Core ' Core | Core Core @ Core

5\‘3

Trend: Datacenter as A Computer

Cloud computing
e Hosting data in the cloud
e Software as services

e Examples:

» Google, Microsoft, Salesforce,
Yahoo, ...

Utility computing
e Pay as you go for computing resources
e Outsourced warehouse-scale hardware and software

e Examples:
 Amazon, Nirvanix

17

Why Study OS?

Learn about concurrency
e Parallel programs run on OS
e OS runs on parallel hardware
e Best way to learn concurrent programming

OS is a key part of a computer system
e It makes our life better (or worse)
e Itis “magic” to realize what we want
e It gives us “power”

Understand how a system works
e How many procedures does a key stroke invoke?
e \What happens when your application references 0 as a pointer?

e Real OS is huge and impossible to read everything, but building a
small OS will go a long way

18

What Is in COS 3187

Methodology

Lectures with discussions
Readings with topics
Six projects to build a small and real OS

Covered concepts

Operating system structure
* Processes, threads, system calls and virtual machine monitor
Synchronization
* Mutex, semaphores and monitors
/O subsystems
» Device drivers, IPC, and introduction to networking
Virtual memory
« Address spaces and paging
Storage system
» Disks and file system

19

Materials

Textbook

e Modern Operating Systems, 3™ Edition, Andrew S.
Tanenbaum

Lecture notes
e Available on website

Precept notes
e Available on website

Other resources — on website

20

Exam, Reading, Participation and Grading

[
Grading (not curved)
e First 5 projects: 50% with extra points
e Midterm: 20%
e Final project or final exam 20%
e Reading & participation 10%

Midterm Exam

e Test lecture materials and projects

e Tentatively scheduled on Thursday of the midterm week
Reading assignments

e Submit your reading notes BEFORE each lecture

e Grading (3: excellent, 2: good, 1: poor, 0: none)
Participation

e Signup sheet at each lecture

21

The First 5 Projects

Projects

e Bootup (150-300 lines)

e Non-preemptive kernel (200-250 lines)

e Preemptive kernel (100-150 lines)

e Interprocess communication and driver (300-350 lines)
e Virtual memory (300-450 lines)

How
e Pair up with a partner, will change after 3 projects
e Each project takes two weeks
e Design review at the end of week one
e All projects due Mondays 11:59pm

The Lab

e Linux clusterin 010 Friends Center, a good place to be
e You can setup your own Linux PC to do projects

22

Project Grading

Design Review

e A signup sheet for making appointments
e 10 minutes with the TA in charge

e 0-5 points for each design review

e 10% deduction if missing the appointment
Project completion

e 10 points for each project

e Extra points available

Late policy of grading projects

e 1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
e 3 days: 36.8%, 7 days: 9.7%

23

Final Project

A simple file system

Grading (20 points)

Do it alone

Due on Dean’s date (~3 weeks)

24

Things To Do

Do not put your code on the web
e Other schools are using similar projects

For today’s material:
e Read MOS 1.1-1.3

For next time
e Read MOS 1.4-1.5

Now: Pair up and fill out the form!

25

