
1

COS 318: Operating Systems

I/O Device and Drivers

2

Input and Output

  A computer’s job is to process data
  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices

and memory)
  Challenges with I/O devices

  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to

access I/O devices
  As device-independent as possible
  Don’t hurt the performance capability of the I/O system too

much

3

Revisit Hardware

  Compute hardware
  CPU and caches
  Chipset
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Two types of I/O
  Programmed I/O (PIO)

•  CPU does the work of moving data

  Direct Memory Access (DMA)
•  CPU offloads the work of moving

data to DMA controller

CPU

Memory
I/O bus

CPU CPU CPU

Network

4

Definitions and General Method
  Overhead

  Time that the CPU is tied up initiating/
ending an operation

  Latency
  Time to transfer one bit (typ. byte)
  Overhead + 1 bit reaches destination

  Bandwidth
  Rate of I/O transfer, once initiated
  Mbytes/sec

  General method
  Higher level abstractions of byte transfers
  Batch transfers into block I/O for

efficiency to amortize overhead and
latency over a large unit

Initiate Data transfer

2

5

Programmed Input Device

  Device controller
  Status register

ready: tells if the host is done
busy: tells if the controller is done
int: interrupt
…

  Data registers
  A simple mouse design

  Put (X, Y) in data registers on a
move

  Interrupt

  Input on an interrupt
  Read values in X, Y registers
  Set ready bit
  Wake up a process/thread or

execute a piece of code

6

Programmed Output Device

  Device
  Status registers (ready, busy, …)
  Data registers

  Example
  A serial output device

  Perform an output
  Wait until ready bit is clear
  Poll the busy bit
  Writes the data to register(s)
  Set ready bit
  Controller sets busy bit and

transfers data
  Controller clears the ready bit and

busy bit

7

Direct Memory Access (DMA)
  DMA controller or adaptor

  Status register
(ready, busy, interrupt, …)

  DMA command register
  DMA register (address, size)
  DMA buffer

  Host CPU initiates DMA
  Device driver call (kernel mode)
  Wait until DMA device is free
  Initiate a DMA transaction

(command, memory address, size)
  Block

  Controller performs DMA
  DMA data to device

(size--; address++)
  Interrupt on completion (size == 0)

  Interrupt handler (on completion)
  Wakeup the blocked process

8

I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

3

9

Recall Interrupt Handling

  Save context (registers that hw hasn’t saved, PSW etc)
  Mask interrupts if needed
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge interrupt controller, perhaps enable it
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler
  Then OS will set up context for next process, load

registers and PSW, start running process …
10

I/O System

Device Drivers

Rest of the
operating
system

Device
driver

Device
driver

. . .

Device
driver

Device
controller

Device
controller

. . .
Device

controller

Device

Device

Device

Device

In
te

rr
up

t H
an

dl
in

g

  Manage the complexity and differences among specific types of
devices (disk vs. mouse, different types of disks …)

  Each handles one type of device or small class of them (eg SCSI)

11

Typical Device Driver Design

  Operating system and driver communication
  Commands and data between OS and device drivers

  Driver and hardware communication
  Commands and data between driver and hardware

  Driver responsibilities
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data structures

Simplified Device Driver Behavior

  Check input parameters for validity, and translate them to device-
specific language

  Check if device is free (wait or block if not)
  Issue commands to control device

  Write them into device controller’s registers
  Check after each if device is ready for next (wait or block if not)

  Block or wait for controller to finish work
  Check for errors, and pass data to device-indept software
  Return status information
  Process next queued request, or block waitng for next
  Challenges:

  Must be reentrant (can be called by an interrupt while running)
  Handle hot-pluggable devices and device removal while running
  Complex and many of them; bugs in them can crash system

12

4

Types of I/O Devices

  Block devices
  Organize data in fixed-size blocks
  Transfers are in units of blocks
  Blocks have addresses and data are therefore addressable
  E.g. hard disks, USB disks, CD-ROMs

  Character devices
  Delivers or accepts a stream of characters, no block structure
  Not addressable, no seeks
  Can read from stream or write to stream
  Printers, network interfaces, terminals

  Like everything, not a perfect classification
  E.g. tape drives have blocks but not randomly accessed
  Clocks are I/O devices that just generate interrupts

13

Typical Device Speeds
  Keyboard
  Mouse
  Compact Flash card
  USB 2.0
  52x CD-ROM
  Scanner
  56K modem
  802.11g wireless net
  Gigabit Ethernet
  FireWire-1
  FireWire 800
  SCSI Ultra-2 disk
  SATA disk
  PCI bus
  Ultrium tape

14

10 B/s
100 B/s
40 MB/s
60 MB/s
7.8 MB/s
400 KB/s
7 KB/s
6.75 MB/s
320 MB/s
50 MB/s
100 MB/s
80 MB/s
300 MB/s
528 MB/s
320 MB/s

15

Device Driver Interface

  Open(deviceNumber)
  Initialization and allocate resources (buffers)

  Close(deviceNumber)
  Cleanup, deallocate, and possibly turnoff

  Device driver types
  Block: fixed sized block data transfer
  Character: variable sized data transfer
  Terminal: character driver with terminal control
  Network: streams for networking

  Interfaces for block and character/stream oriented
devices (at least) are different
  Like to preserve same interface within each category

16

Character and Block Device Interfaces

  Character device interface
  read(deviceNumber, bufferAddr, size)

•  Reads “size” bytes from a byte stream device to “bufferAddr”
  write(deviceNumber, bufferAddr, size)

•  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “deviceAddr” to “bufferAddr”
  write(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “bufferAddr” to “deviceAddr”
  seek(deviceNumber, deviceAddress)

•  Move the head to the correct position
•  Usually not necessary

5

17

Unix Device Driver Interface Entry Points
  init()

  Initialize hardware
  start()

  Boot time initialization (require system services)
  open(dev, flag, id) and close(dev, flag, id)

  Initialization resources for read or write, and release afterwards
  halt()

  Call before the system is shutdown
  intr(vector)

  Called by the kernel on a hardware interrupt
  read(…) and write() calls

  Data transfer
  poll(pri)

  Called by the kernel 25 to 100 times a second
  ioctl(dev, cmd, arg, mode)

  special request processing

18

Synchronous vs. Asynchronous I/O

  Synchronous I/O
  read() or write() will block a user process until its completion
  OS overlaps synchronous I/O with another process

  Asynchronous I/O
  read() or write() will not block a user process
  user process can do other things before I/O completion
  I/O completion will notify the user process

19

Detailed Steps of Blocked Read

  A process issues a read call which executes a system call
  System call code checks for correctness
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Controller performs DMA data transfer
  Block the current process and schedule a ready process
  Device generates an interrupt on completion
  Interrupt handler stores any data and notifies completion
  Move data from kernel buffer to user buffer
  Wakeup blocked process (make it ready)
  User process continues when it is scheduled to run

20

Asynchronous I/O

  API
  Non-blocking read() and write()
  Status checking call
  Notification call
  Different form the synchronous I/O API

  Implementation
  On a write

•  Copy to a system buffer, initiate the write and return
•  Interrupt on completion or check status

  On a read
•  Copy data from a system buffer if the data are there
•  Otherwise, return with a special status

6

21

Why Buffering?

  Speed mismatch between the producer and consumer
  Character device and block device, for example
  Adapt different data transfer sizes (packets vs. streams)

  Deal with address translation
  I/O devices see physical memory
  User programs use virtual memory

  Caching
  Avoid I/O operations

  User-level and kernel-level buffering
  Spooling

  Avoid user processes holding up resources in multi-user
environment

22

Think About Performance

  A terminal connects to computer via a serial line
  Type character and get characters back to display
  RS-232 is bit serial: start bit, character code, stop bit (9600

baud)
  Do we have any cycles left?

  What should the overhead of an interrupt be
  Technique to minimize interrupt overhead

  Interrupt coalescing

23

Other Design Issues

 Build device drivers
  Statically

•  A new device driver requires reboot OS
  Dynamically

•  Download a device driver without rebooting OS
•  Almost every modern OS has this capability

 How to down load device driver dynamically?
  Load drivers into kernel memory
  Install entry points and maintain related data structures
  Initialize the device drivers

24

Dynamic Binding: Indirection

Open(1, …);

D
riv

er
-k

er
ne

l i
nt

er
fa

ce

Driver for device 0

…

open(…) {
}

read(…) {
} Driver for device 1

…

open(…) {
}

read(…) {
}

Indirect table

Other
Kernel

services

Interrupt
handlers

7

25

Issues with Device Drivers

  Flexible for users, ISVs and IHVs
  Users can download and install device drivers
  Vendors can work with open hardware platforms

  Dangerous methods
  Device drivers run in kernel mode
  Bad device drivers can cause kernel crashes and introduce

security holes

  Progress on making device driver more secure
  Checking device driver codes
  Build state machines for device drivers

26

Summary

  Device controllers
  Programmed I/O is simple but inefficient
  DMA is efficient (asynchronous) and complex

  Device drivers
  Dominate the code size of OS
  Dynamic binding is desirable for desktops or laptops
  Device drivers can introduce security holes
  Progress on secure code for device drivers but completely

removing device driver security is still an open problem

