
1

COS 318: Operating Systems

I/O Device and Drivers

2

Input and Output

  A computer’s job is to process data
  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices

and memory)
  Challenges with I/O devices

  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to

access I/O devices
  As device-independent as possible
  Don’t hurt the performance capability of the I/O system too

much

3

Revisit Hardware

  Compute hardware
  CPU and caches
  Chipset
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Two types of I/O
  Programmed I/O (PIO)

•  CPU does the work of moving data

  Direct Memory Access (DMA)
•  CPU offloads the work of moving

data to DMA controller

CPU

Memory
I/O bus

CPU CPU CPU

Network

4

Definitions and General Method
  Overhead

  Time that the CPU is tied up initiating/
ending an operation

  Latency
  Time to transfer one bit (typ. byte)
  Overhead + 1 bit reaches destination

  Bandwidth
  Rate of I/O transfer, once initiated
  Mbytes/sec

  General method
  Higher level abstractions of byte transfers
  Batch transfers into block I/O for

efficiency to amortize overhead and
latency over a large unit

Initiate Data transfer

2

5

Programmed Input Device

  Device controller
  Status register

ready: tells if the host is done
busy: tells if the controller is done
int: interrupt
…

  Data registers
  A simple mouse design

  Put (X, Y) in data registers on a
move

  Interrupt

  Input on an interrupt
  Read values in X, Y registers
  Set ready bit
  Wake up a process/thread or

execute a piece of code

6

Programmed Output Device

  Device
  Status registers (ready, busy, …)
  Data registers

  Example
  A serial output device

  Perform an output
  Wait until ready bit is clear
  Poll the busy bit
  Writes the data to register(s)
  Set ready bit
  Controller sets busy bit and

transfers data
  Controller clears the ready bit and

busy bit

7

Direct Memory Access (DMA)
  DMA controller or adaptor

  Status register
(ready, busy, interrupt, …)

  DMA command register
  DMA register (address, size)
  DMA buffer

  Host CPU initiates DMA
  Device driver call (kernel mode)
  Wait until DMA device is free
  Initiate a DMA transaction

(command, memory address, size)
  Block

  Controller performs DMA
  DMA data to device

(size--; address++)
  Interrupt on completion (size == 0)

  Interrupt handler (on completion)
  Wakeup the blocked process

8

I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

3

9

Recall Interrupt Handling

  Save context (registers that hw hasn’t saved, PSW etc)
  Mask interrupts if needed
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge interrupt controller, perhaps enable it
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler
  Then OS will set up context for next process, load

registers and PSW, start running process …
10

I/O System

Device Drivers

Rest of the
operating
system

Device
driver

Device
driver

. . .

Device
driver

Device
controller

Device
controller

. . .
Device

controller

Device

Device

Device

Device

In
te

rr
up

t H
an

dl
in

g

  Manage the complexity and differences among specific types of
devices (disk vs. mouse, different types of disks …)

  Each handles one type of device or small class of them (eg SCSI)

11

Typical Device Driver Design

  Operating system and driver communication
  Commands and data between OS and device drivers

  Driver and hardware communication
  Commands and data between driver and hardware

  Driver responsibilities
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data structures

Simplified Device Driver Behavior

  Check input parameters for validity, and translate them to device-
specific language

  Check if device is free (wait or block if not)
  Issue commands to control device

  Write them into device controller’s registers
  Check after each if device is ready for next (wait or block if not)

  Block or wait for controller to finish work
  Check for errors, and pass data to device-indept software
  Return status information
  Process next queued request, or block waitng for next
  Challenges:

  Must be reentrant (can be called by an interrupt while running)
  Handle hot-pluggable devices and device removal while running
  Complex and many of them; bugs in them can crash system

12

4

Types of I/O Devices

  Block devices
  Organize data in fixed-size blocks
  Transfers are in units of blocks
  Blocks have addresses and data are therefore addressable
  E.g. hard disks, USB disks, CD-ROMs

  Character devices
  Delivers or accepts a stream of characters, no block structure
  Not addressable, no seeks
  Can read from stream or write to stream
  Printers, network interfaces, terminals

  Like everything, not a perfect classification
  E.g. tape drives have blocks but not randomly accessed
  Clocks are I/O devices that just generate interrupts

13

Typical Device Speeds
  Keyboard
  Mouse
  Compact Flash card
  USB 2.0
  52x CD-ROM
  Scanner
  56K modem
  802.11g wireless net
  Gigabit Ethernet
  FireWire-1
  FireWire 800
  SCSI Ultra-2 disk
  SATA disk
  PCI bus
  Ultrium tape

14

10 B/s
100 B/s
40 MB/s
60 MB/s
7.8 MB/s
400 KB/s
7 KB/s
6.75 MB/s
320 MB/s
50 MB/s
100 MB/s
80 MB/s
300 MB/s
528 MB/s
320 MB/s

15

Device Driver Interface

  Open(deviceNumber)
  Initialization and allocate resources (buffers)

  Close(deviceNumber)
  Cleanup, deallocate, and possibly turnoff

  Device driver types
  Block: fixed sized block data transfer
  Character: variable sized data transfer
  Terminal: character driver with terminal control
  Network: streams for networking

  Interfaces for block and character/stream oriented
devices (at least) are different
  Like to preserve same interface within each category

16

Character and Block Device Interfaces

  Character device interface
  read(deviceNumber, bufferAddr, size)

•  Reads “size” bytes from a byte stream device to “bufferAddr”
  write(deviceNumber, bufferAddr, size)

•  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “deviceAddr” to “bufferAddr”
  write(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “bufferAddr” to “deviceAddr”
  seek(deviceNumber, deviceAddress)

•  Move the head to the correct position
•  Usually not necessary

5

17

Unix Device Driver Interface Entry Points
  init()

  Initialize hardware
  start()

  Boot time initialization (require system services)
  open(dev, flag, id) and close(dev, flag, id)

  Initialization resources for read or write, and release afterwards
  halt()

  Call before the system is shutdown
  intr(vector)

  Called by the kernel on a hardware interrupt
  read(…) and write() calls

  Data transfer
  poll(pri)

  Called by the kernel 25 to 100 times a second
  ioctl(dev, cmd, arg, mode)

  special request processing

18

Synchronous vs. Asynchronous I/O

  Synchronous I/O
  read() or write() will block a user process until its completion
  OS overlaps synchronous I/O with another process

  Asynchronous I/O
  read() or write() will not block a user process
  user process can do other things before I/O completion
  I/O completion will notify the user process

19

Detailed Steps of Blocked Read

  A process issues a read call which executes a system call
  System call code checks for correctness
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Controller performs DMA data transfer
  Block the current process and schedule a ready process
  Device generates an interrupt on completion
  Interrupt handler stores any data and notifies completion
  Move data from kernel buffer to user buffer
  Wakeup blocked process (make it ready)
  User process continues when it is scheduled to run

20

Asynchronous I/O

  API
  Non-blocking read() and write()
  Status checking call
  Notification call
  Different form the synchronous I/O API

  Implementation
  On a write

•  Copy to a system buffer, initiate the write and return
•  Interrupt on completion or check status

  On a read
•  Copy data from a system buffer if the data are there
•  Otherwise, return with a special status

6

21

Why Buffering?

  Speed mismatch between the producer and consumer
  Character device and block device, for example
  Adapt different data transfer sizes (packets vs. streams)

  Deal with address translation
  I/O devices see physical memory
  User programs use virtual memory

  Caching
  Avoid I/O operations

  User-level and kernel-level buffering
  Spooling

  Avoid user processes holding up resources in multi-user
environment

22

Think About Performance

  A terminal connects to computer via a serial line
  Type character and get characters back to display
  RS-232 is bit serial: start bit, character code, stop bit (9600

baud)
  Do we have any cycles left?

  What should the overhead of an interrupt be
  Technique to minimize interrupt overhead

  Interrupt coalescing

23

Other Design Issues

 Build device drivers
  Statically

•  A new device driver requires reboot OS
  Dynamically

•  Download a device driver without rebooting OS
•  Almost every modern OS has this capability

 How to down load device driver dynamically?
  Load drivers into kernel memory
  Install entry points and maintain related data structures
  Initialize the device drivers

24

Dynamic Binding: Indirection

Open(1, …);

D
riv

er
-k

er
ne

l i
nt

er
fa

ce

Driver for device 0

…

open(…) {
}

read(…) {
} Driver for device 1

…

open(…) {
}

read(…) {
}

Indirect table

Other
Kernel

services

Interrupt
handlers

7

25

Issues with Device Drivers

  Flexible for users, ISVs and IHVs
  Users can download and install device drivers
  Vendors can work with open hardware platforms

  Dangerous methods
  Device drivers run in kernel mode
  Bad device drivers can cause kernel crashes and introduce

security holes

  Progress on making device driver more secure
  Checking device driver codes
  Build state machines for device drivers

26

Summary

  Device controllers
  Programmed I/O is simple but inefficient
  DMA is efficient (asynchronous) and complex

  Device drivers
  Dominate the code size of OS
  Dynamic binding is desirable for desktops or laptops
  Device drivers can introduce security holes
  Progress on secure code for device drivers but completely

removing device driver security is still an open problem

