
COS126 Spring08 Programming Exam 2
(Overlap version)

/* Name:
* Precept:
* Comment: Creates a data type called "Segment" that consists of two numbers
* on a number line. It also tests to see if the input segments overlap each
* other, and prints out the pairs of segments that do overlap.
*/

public class Segment
{

private double x0, x1; // co-ordinates of the endpoints of the segment

// constructor to initialize Segment
public Segment(double x0, double x1)
{

this.x0 = x0; // initialize the co-ordinates
this.x1 = x1; // to the given values

}

// Is ’x’ contained in this segment?
public boolean contains(double x)
{

return (x0 < x && x <= x1);
}

// Does this Segment overlap ’that’?
public boolean overlaps(Segment that)
{

// This is equivalent to asking: "does the right endpoint of
// either of these two segments fall within the other segment?"

// Note that this isn’t the same as check the left endpoint,
// because it isn’t counted as part of the segment.

return (this.contains(that.x1) || that.contains(this.x1));
}

// Return a string representation of this Segment.
public String toString()
{

return x0 + " -- " + x1;
}

1

// test client
public static void main(String[] args)
{

int N = Integer.parseInt(args[0]); // get number of inputs

Segment[] segs = new Segment[N]; // create array to
// hold the Segments

// Read in all of the input.
for (int i = 0; i < N; i++)
{

double x0 = StdIn.readDouble(); // read in the
double x1 = StdIn.readDouble(); // co-ordinates

segs[i] = new Segment(x0, x1); // create Segment objects
}

// Now check for pairs of overlapping Segments.
for (int i = 0; i < N; i++)
{

for (int j = 0; j < i; j++)
{

// If the ith and jth Segments overlap, print out a message.
if (segs[j].overlaps(segs[i]))

System.out.println(segs[j] + " overlaps " + segs[i]);
}

}
}

}

2

COS126 Spring08 Programming Exam 2
(No overlap version)

/* Name:
* Precept:
* Comment: Creates a data type called "Segment" that consists of two numbers
* on a number line. It also tests to see if the input segments overlap each
* other, and prints out the segments that don’t overlap any other segment.
*/

public class Segment {
// Instance variables
private double x0; // Low end
private double x1; // High end

// Constructor
public Segment(double x0, double x1) {

this.x0 = x0;
this.x1 = x1;

}

// Is ’x’ contained in this segment?
public boolean contains(double x) {

return (x >= this.x0 && x < this.x1);
}

// Tests to see if two segments overlap each other
public boolean overlaps(Segment that) {

return (this.contains(that.x0) || that.contains(this.x0));
}

public String toString() {
return (this.x0 + " -- " + this.x1);

}

3

public static void main(String[] args) {
int N = Integer.parseInt(args[0]); // Reads in N

Segment[] list = new Segment[N]; // Creates new array of Segments call "list"
for (int i = 0; i < N; i++) { // Reads in the data for "list"

double temp1 = StdIn.readDouble();
double temp2 = StdIn.readDouble();
list[i] = new Segment(temp1, temp2);

}

for (int i = 0; i < N; i++) {
// noOverlap is true if a segment does not overlap with any other in "list"
boolean noOverlap = true;

// for a given list[i], it is tested for overlapping against all other
// segments in "list", except for itself.
for (int j = 0; j < N; j++) {

if (i != j) {
if (list[i].overlaps(list[j]))

noOverlap = false;
}

}
// Given that noOverlap is true, that particular list[i] is printed.
if (noOverlap) {

System.out.println(list[i]);
}

}
}

}

4

