1. Number systems.
 (a) $44_{10} = 4 + 8 + 32$.
 (b) -20_{10}. Flipping the bits and adding one yields 010100_2 ($010011 + 1$), which is 20_{10} ($4 + 16$). Thus, 101100_2 is -20_{10}.
 (c) FFB316. The binary representation of 77_{10} is 0000000010011010_2. ($64 + 8 + 4 + 1$). Flipping the bits and adding one yields -77_{10} in binary, which is 1111111101110011_2. We convert to hexadecimal, 4 bits at a time: FFB316.
 (d) Equal for all values. Recall that $^\wedge$ is exclusive-or in Java and TOY, not exponentiation. The exclusive-or operator is associative.

2. Java basics.
 (a) II and III only.
 (b) It is possible to reach the end of the function without returning any value.
 (c) A set of values and operations on those values. See 1.2 in the textbook or lecture slides.
 (d) I and III only. II is a property of both command-line inputs and standard input.
 (e) All are true except for iv (a Java function can return only one value). See pp. 188–193 of the textbook.

3. Arrays, loops, functions, and debugging.

```
public static double[] times(double[][] a, double[] x) {
    int N = x.length;
    double[] y = new double[N];
    for (int i = 0; i < N; i++) {
        double sum = 0.0;
        for (int j = 0; j < N; j++) {
            sum += a[i][j] * x[j];
        }
        y[i] = sum;
    }
    return y;
}
```
4. **TOY.**

(a) 0. The program repeatedly subtracts \(\text{R}[1] \) (which is always 11) from \(\text{R}[2] \) (initially 55) until \(\text{R}[2] \) reaches 0.

(b) Does not halt. The load statement in line 11 sets \(\text{R}[2] \) to the value in memory location 10 (which is 7111). The statement in line 13 jumps to line 11, which resets \(\text{R}[2] \) to 7111 each time.

(c) \(\text{A1F0} \). The program sets \(\text{R}[2] \) to the contents of the memory location pointed to by \(\text{R}[1] \) (memory location 11). Thus, \(\text{R}[2] \) is initialized to \(\text{A201} \). The subtract statement in line 12 subtracts 0011 from \(\text{R}[2] \) to get \(\text{A1F0} \). Since \(\text{R}[2] \) is negative, the jump statement in line 13 does not change the program counter.

5. **Recursive graphics.**

(b)