Solutions

COS 126 Midterm 1 Written Exam, Spring 2008

This test is 8 questions, weighted as indicated. The exam is closed book, except that you are allowed to use a one page cheatsheet. No calculators or other electronic devices are permitted. Give your answers and show your work in the space provided. *Put your name, login ID, and precept number on this page (now)*, and write out and sign the Honor Code pledge before turning in the test. You have 50 minutes to complete the test.

"I pledge my honor that I have not violated the Honor Code during this examination."

1	/10
2	/ 5
3	/ 5
4	/ 5
5	/15
6	/ 5
7	/15
8	/15
TOTAL	/75

Signature

1. Number representation (10 points). Suppose that you have a 16-bit computer word, using two's-complement representation for integers. In the blank spaces to the right, write the 4-digit hexadecimal representation of each entity described on the left.

A. Decimal number 256	0100
B. Decimal number 100	0064
C. Binary number 100	0004
D. Decimal number -100	FF9C
E. TOY instruction to add register A to register B.	1BAB or 1BBA

- 2. **Toy instructions** (5 points). Which of the following TOY instructions is a no-op (never changes the contents of any register, any memory location, or the program counter)? Circle all the no-ops.
 - F. 2330 is a no-op
 - G. 4330 is a no-op
 - H. 7303
 - I. 8303
 - J. C000

3. Array declarations (5 points). Among the following code fragments, circle the ones that will *not* cause a compile-time error. B and D will not cause a compile-time error.

```
K. int[] a = int[10];
L. int[] a = new int[10];
M. int[] a = {1, 2, 3}; int b = a;
N. int[] a;
O. int a = {1, 2, 3};
```

4. **Scope** (5 points). Consider the following code.

```
public class Cubes {
   public static int square(int i) {
      return i * i * i;
   }
   public static void main(String[] args) {
      for (int i = 1; i <= 1000; i++) {
         StdOut.println(square(i));
      }
   }
}</pre>
```

Among the following statements, circle those that are true. D is true.

- P. Will not compile because i is not declared in square().
- Q. Prints only a few lines because of scope clash with variable i.
- R. Prints the squares of the integers from 1 to 1000.
- S. Prints the cubes of the integers from 1 to 1000.
- T. Goes into an infinite loop.

5. Recursive method (15 points). Consider the following (recursive) static method.

```
public static int mystery(int n, int m) {
    if (m <= 0) return 0;
    else return n + mystery(n, m - 1);
}</pre>
```

What value is returned for the call mystery(6, 3)?

18 is returned.

What function does mystery() compute for positive n and m? mystery() computes the product of n and m.

6. Nested loops (5 points). Consider the following code fragment.

```
int N = Integer.parseInt(args[0]);
char[][] pic = new char[N][N];
for (int i = 0; i < N; i++) {</pre>
   for (int j = 0; j < N; j++) {
      if ( i == j || i == 0 || i == N - 1 )
         pic[i][j] = '*';
      else
         pic[i][j] = '.';
   }
}
for (int i = 0; i < N; i++) {
   for (int j = 0; j < N; j++) {
      System.out.print(pic[i][j]);
   }
   System.out.println();
}
```

What is the output when N = 6? Circle your answer. D is the answer.

U.		В.	C.	D.	E.
	* * * * * *	* * * * * *	**	* * * * * *	* * * * * * *
	***	*.	***	.*	*
	* . * *	*	**.*	*	*
	**.*	*	* . * *	*	*
	***	.*	***	* .	*
	* * * * * *	* * * * * *	* *	* * * * * *	* * * * * * *

7. **Performance** (15 points). The following table gives approximate running times for a program with *N* inputs, for various values of *N*.

Ν	time
1000	5 seconds
2000	20 seconds
5000	2 minutes
10,000	8 minutes

Which of the following best describes the likely running time of this program for N = 100,000? Using the doubling hypothesis, the increase appears to be quadratic. So, when N increases by 10 (from 10,000 to 100,000) the time increases by 100 (from 8 to 800 minutes). 800 minutes is a little over 13 hours, so the best of the answers if half a day.

V. A few minutes

W. A few hours

- X. Half a day
- Y. A few days
- Z. A few weeks

Refine a power-law hypothesis to give a formula for the approximate likely running time (in **minutes**) of this program as a function of *N*. (You need to find the leading constant and the exponent.)

-8	3	2			-8	2
8 x 10	Ν	or	8.3	x 10	Ν	

8. Conditionals (15 points). Consider the following program.

```
public class Conditionals {
   public static void main(String[] args) {
      int N = Integer.parseInt(args[0]);
      String s = "a";
      String t = "b";
      if (N >= 10 && N <= 20) s = s + t;
      else if (N <= 5 || N >= 25) s = t + s;
      else if (N \ge 30) = s + s;
      else s = t + t;
      if (N % 3 == 0) {
         t = s + t;
         if (N % 5 != 0) t = t + s;
      }
      System.out.println(s + t);
   }
}
```

Give the result of executing this program with

```
% java Conditionals 15
ababb
```

Which (one or more) of the following correspond to the output of Conditionals for some positive input value of N? Circle all correct answers. Last 4 are all possible answers.

aaaab	ababbab	abb	bbb	bbbbbbb
	N=12	N=10	N=22	N=21