COS 126

Fall 2005

Exam 1 Solutions

1. Number Systems (4 points)

- a) FEC9
- b) **-311**
- c) 26E (Note that 622 is 2×311 .)

2. Java Programming, Arrays, Standard Input (5 points)

- a) This program read in a list of presidents from Standard Input and stores the names in parallel arrays. The number of each president determines the index in each name array. It also accepts a command line input requesting the *n*th president and prints out that president's name.
- b) java Presidents 3 < US_Presidents.txt
- c) Thomas Jefferson

3. Adventures in Java Programming and Debugging (8 points)

- a) line number Correct code
 - 3 int N = Integer.parseInt(args[0]);
 - 7 if (N == 0) System.out.println(0);
 - 9 for (int i = N; i != 0; i++)

Declaring int i on line 9 fixes all the compiler errors on lines 9 and 10.

b)	line number		Correct			code								
	9		for	(int	i	=	sum	-	1;	i	>	0;	i))

There are other acceptable answers.

	Ν	sum	i	output
	-2	2	1	
c)		3	0	-3

4. Recursion (8 points)

- (a) foo(2) returns true.
- (b) foo(3) returns false.
- (c) foo(4) returns true.
- (d) foo(5) returns false.
- (e) foo(-1) results in a StackOverflow error.

- (f) foo(5000) returns true.
- (g) foo(5000) generates 2500 calls to bar.
- (h) In general, foo(n) determines whether n is even.

5. Analysis of Algorithms (4 points)

a) N^2

The outer loop is traversed N times. The inner loop is traversed 0 times, then 1 time, then 2 times, then 3 times . . . So, the number of operations is $0+1+2+\ldots+N$ times, and the order of growth is N^2 .

- b) $N \log N$ just like quicksort.
- c) constant
- d) $N \log N$

The recursion tree for this method has $\log N + 2$ levels. For each level l, where $l \leq \log N$, there are 2^l calls to the recursive function. (Level 0 is the first call using the original N; level $\log N + 1$ contains the base case manypeak $(0, \ldots)$.) Each call executes a loop that iterates $N/(2^l)$ times. Therefore, all the work done by all the looping on one level is N, for $N \log N$ overall order of growth.

6. Arrays, Functions, Analysis of Algorithms (8 points)

- a) mystery1(a, 5) returns true.
- b) Fill in the trace table to show that mystery2(a, 5) returns the same thing.

target	low	high	mid	return value
5	0	6	3	
		2	1	true

- c) mystery1(a, 20) and mystery2(a, 20) both return false .
- d) These methods check whether target is an element in the array.
- e) mystery1(a, 32) makes 14 comparisons with the target. (two comparisons each pass through the for loop)
- f) mystery2(a, 32) makes 6 comparisons with the target. (two comparisons each pass through the while loop)
- g) mystery2()
- h) mystery1() does a sequential search through the array elements, so it has possibly N passes through the loop.

mystery2() halves the search area each pass, so worst case, it makes $\log N$ passes through the loop.

7. Recursive Graphics (5 points)

i) C, F

- ii) none
- iii) A
- iv) Draw the picture that will result from ordering E when n = 2.

8. TOY (6 points)

a) Trace through the program for the following data.

// data								
50: 0003	R[1]	R[2]	R[3]	R[4]	R[A]	R[B]	R[F]	output
51: 0007	0001	FFFE	0007		0051	0003	0013	
52: 0005 53: 0006		0001	0005	0005	0052	0002		
55. 0000				0006	0053	0001		
						0000		0005

- b) Program will output 0002 (the smallest element in the array).
- c) AE (hex) or 174 (decimal). The array can use locations 51 thru FE. (hex)