Wireless systems

- how radio works
- radio spectrum allocation
- examples
 - cell phones
 - RFID: prox, E-ZPass, store tags, passports, ...
 - 802.11 (WiFi)
 - Bluetooth
 - GPS
 - cordless phones
 - ...
- tradeoffs
 - spectrum, power, range, size, weight, mobility
- non-technical issues
 - regulation, competition, ...

Radio

- electromagnetic radiation to carry information
 - without wires => "wireless"
- radiation is a wave of a particular frequency (in Hz)
- "modulate" the wave to impose information on it
 - amplitude (AM): change the power level
 - frequency (FM): change the frequency around nominal value
- received signal strength varies directly with power level
- received signal strength dies off with square of distance
- higher frequencies go shorter distances
Cell phones 101

- all phones are part of the public switched telephone network
- a cell phone is connected by radio instead of wires
- moves long distances, at high speed, appears out of nowhere
- shares a very limited radio frequency spectrum with others
- operates with low power because it uses batteries

- this makes life complicated
Cells (a very idealized picture)

- divide geographical area into cells (notionally hexagonal)
- each cell has an antenna, handles all cell phones in its area
- available radio spectrum is divided into channels
 - two channels for one conversation, one for each direction
 - competing carriers can all operate
 - each has its own independent equipment
- each cell gets 1/7 of the channels
 - adjacent cells can't use the same channels because of interference
 - non-adjacent cells can re-use channels

How it works

- when a phone is turned on, it broadcasts its ID ("registration")
 - nearest base station notices, validates with home system
 - registration uses encryption for fraud prevention
- when phone is called, home system knows where it is
 - contacts base(s) where it is
 - bases broadcast to where last seen ("paging")
- phones talk to base with strongest signal
 - base and phone communicate over 2 agreed-upon channels (up, down)
 - phones continuously adjust power level to signal strength at base
 - uses less battery, creates less interference for other phones
- phones move from base to base and from system to system
 - base initiates handoff when signal gets weak
 - phone picked up by base with strongest signal
 - elaborate protocols at all levels
How it works, continued

• **multiple frequency bands** (different in different parts of the world)
 - divided into channels (frequency multiplexing)
 - digital phones multiplex several calls on one channel (GSM)
 - or spread calls out over the whole spectrum (CDMA)
 - phones usually support multiple bands
• **channels carry both voice and control information** (including data)
 - digital speech is highly compressed (~1 bit/speech sample)
 - elaborate coding & error correction for speech & control information
 - power turned off when nothing is being sent
• **GSM phones store user info on removable flash memory card**
 - SIM (Subscriber Information Module)
 - may be able to replace card to use in a different environment
• **most of the world uses** **GSM**
 - in USA, AT&T & T-Mobile use GSM; Verizon & Sprint use CDMA

Technology meets politics again

• **should texting while driving be illegal (and enforced)?**
 - how about just driving while talking?
• **where determines where cell phone towers are permitted?**
 - property rights versus eminent domain
• **should cell phone jammers be legalized?**
 - in theatres, trains, etc.
• **location tracking and surveillance**
 - FCC mandates that cell phone can be locatable within 125 m radius
 - should real-time location info be available to law enforcement, etc.?
 - how should this evolve as GPS becomes universally available?
 - who can have access to what cell phone records when?
Search engines

- browser uses a FORM to send a query to a server
 - e.g., google.com
- server runs a program to extract query from form
- finds pages that contains word(s) of query
- generates HTML
- returns page to client

- server needs to know what pages contain relevant words
- continuously crawls the web collecting pages
- builds big database that tells what pages contain any given word

- basic problem: scale
 - lots of pages, lots of words, lots of queries

Server processes

- 3 basic processes going on in parallel
 - respond to incoming queries by looking up words in database
 - crawl web looking for new pages
 - extract words from new pages and insert into database
Fetching new pages

- start with a list of likely URLs
- fetch data from next URL from the list
 - obey robot exclusion standard
- extract parts to be indexed, deliver to index builder
- extract URLs
- delete duplicate URLs (ones seen recently)
- delete irrelevant ones (advertisements, ...)
- add remaining URLs to end of list
- go back to the top

questions:
 - how to start
 - how to detect duplicates quickly
 - what to preserve (text, .html files, .txt files, PDF, gif/jpg, ...)
 - how to avoid overloading big/popular sites

Building and searching an index

- for a new page that has just been fetched:
 - isolate words (discard HTML tags, etc.)
 - handle upper and lower case, accents, punctuation,
 other languages and character sets, ...
 - for each word
 add URL to list for that word
 add word position within the page to the list for the URL

- to look up a single word query:
 - go to the list for the word
 - collect all URLs
 - sort them into order by weighting function
 importance, frequency, ...

- queries with multiple words:
 - collect URL lists, combine them, weight them
Hashing: an algorithm to look things up quickly

- problem: how to look up one word in 1 billion words, really fast
 - binary search would be 30 probes if names were sorted
 - sorting takes too long if it has to be updated

- hashing: scramble the word into an integer
 - between 0 and N
 - so that hash values of potential words are spread out uniformly

- store all words with the same hash value together
- searching for a word then requires only
 - compute the hash value
 - look at the list of previously-stored words with that hash value

- example hashing algorithm: add up the numeric values of all the characters in the word

Ranking search results

- how to get the most likely results on the first page (at the top)
 - most people look only at the first few results
 - need for very high precision (relevant documents in the top 10 or so)

- Google uses proprietary "page rank" algorithm based on link structure of web
 - pages that are cited often move higher
 - pages that are cited by higher ranked sites move higher
 - anchor () text gives more information
 - proximity of search terms within page
 - ...
- other search engines have analogous techniques
- have to defend against attempts to inflate rankings
Privacy and copyright issues

- what privacy standards apply to search engines?
 - how can private / incorrect information be purged?

- search engines versus government
 - should Yahoo have released information about Chinese dissidents to the Chinese government?
 - does Google’s acquisition of DoubleClick concentrate too much information about individuals in one place?
 - can query logs be subpoenaed?
 - AOL’s release of "sanitized" information permitted identification of individuals from their queries

- copyright
 - Viacom v YouTube: vicarious liability or DMCA safe harbor?
 - should newspaper stories be indexed without permission?

- trademarks
 - can someone buy someone else’s trademark as an advertising keyword?
 - e.g., Microsoft buys "iPod"

- ...
Hardware

• logical/functional/architectural structure
 - bus connects CPU, RAM, disks, other devices
 - caching
 - CPU cycle: fetch-decode-execute; kinds of instructions
 toy machine as an example
 different processor families are incompatible at the instruction level
 - von Neumann: architecture; Turing: equivalence of all machines

• physical implementation: sizes and capacities
 - chips; Moore's law, exponential growth

• analog vs digital

• representation of information
 - bits, bytes, numbers, characters, instructions
 - powers of 2; binary and hexadecimal numbers
 - interpretation determined by context

• it's all bits at the bottom

Software

• algorithms: sequence of defined steps that eventually stops
 - complexity: how number of steps is related to amount of data
 linear: searching, counting, ...
 quadratic: simple sorting
 logarithmic: binary search (logarithm = number of bits needed to store)
 n log n: quicksort
 exponential: towers of Hanoi, traveling salesman problem, ...

• programs and programming languages:
 - evolution, language levels: machine, assembly, higher-level
 - translation/compilation; interpretation
 - a program can simulate a machine or another program

• basic programming, enough to figure out what some code is doing
 - variables, constants, expressions, statements, loops & branches (if-else, while), functions, libraries, components

• operating systems: run programs, manage file system & devices
 - file systems: logical: directories and files; physical: disk blocks

• application programs, interfaces to operating system
Communications

- local area networks, Ethernet, wireless, broadcast media
- Internet: IP addresses, names & DNS, routing; packets
 - bandwidth
- protocols: IP, TCP, higher-level; layering
 - synthesis of reliable services out of unreliable ones
- Web: URLs, HTTP, HTML, browser
 - caching
- security & privacy: viruses, cookies, spyware, ...
 - active content: Javascript, ActiveX
- cryptography
 - secret key; public key; digital signatures
- compression; error detection & correction
- case studies and the real world
 - prox cards, peer to peer, cell phones, search engines, ...

Real world issues

- legal
 - intellectual property: patents, copyrights, contracts, licenses
 - jurisdiction, especially international
- social
 - privacy, security
- economic
 - open source vs proprietary
 - who owns what
- political
 - policy issues
 - balancing individual, commercial and societal rights and concerns
Things to take away

• **some skills, some specific technical knowledge**
 - how computers and communications work today
 - what’s ephemeral, what’s likely to still be true in the future

• **improved numeracy / quantitative reasoning**
 - what makes sense, what can’t possibly make sense, and why
 plausible estimates, engineering judgement, enlightened skepticism

• **another way of thinking**
 - how do things work?
 - how *might* something work?
 - you can often figure it out

• **some appreciation of tradeoffs & alternatives**
 - you never get something for nothing

• **some historical perspective**
 - everything derives from what came before

• **informed opinions about the role of technology**

Final exam (watch the web page!!!)

• **Thursday January 21 1:30pm, Friend Center 101**
 - Q/A session January 17; watch the web page for schedule
 - come to office hours or send mail or drop in; watch the web page

• similar to midterm but twice as long

• open notes, problem sets, labs, ...

• bring a calculator if you can — it might make something easier

• **hints**
 - I’m usually looking for something *brief* that shows that you understand or can reason
 - if you’re writing or calculating a lot, you’re likely on the wrong track
 - questions are meant to test understanding of basic ideas and critical distinctions
 meant to be simple and straightforward, not complicated, *if you understand*
 not meant to be tricky or rely on obscure facts
 - think about plausibility and where I’m likely coming from
 - if it still seems ambiguous, say "I’m assuming this..." and carry on