Cryptography

- history
 - Caesar cipher, rot13
 - substitution ciphers, etc.
 - Enigma (Turing)
- modern secret key cryptography
 - DES, AES
- public key cryptography
 - RSA, PGP, PKI
- crypto politics

Cryptography basics

• Alice & Bob want to exchange messages

- keeping the content secret
- though not the fact that they are communicating
- they need some kind of secret that scrambles messages
 - makes them unintelligible to bad guys but intelligible to good guys

• the secret is a "key" (like a password)

- known only to the communicating parties
- that is used to do the scrambling and unscrambling
- for Caesar cipher, the "key" is the amount of the shift (A => D, etc.)
- for substitution ciphers, the key is the permutation of the alphabet
- for Enigma, key is wiring and position of wheels plus settings of patches
- for modern ciphers, the key is a large integer used as part of an intricate algorithmic operation on the bits of the message

Modern secret key cryptography

- messages encrypted and decrypted with a shared secret key
 - usually the same key for both operations ("symmetric")
- encryption/decryption algorithm is known to adversaries
 - "security by obscurity" does not work
- attacks
 - decrypt specific message(s) by analysis
 various combinations of known or chosen plaintext and ciphertext
 - determine key by "brute force" (try all possible keys)
- if key is compromised, all past and future messages are compromised
- big problem: key distribution
 - need a secure way to get the key to both/all parties diplomatic pouches, secret agents, ...
 - doesn't work when the parties don't know each other
 - or have no possible channel for exchanging a secret key
 - or when want to exchange secret messages with many different parties e.g., credit card numbers on Internet

DES and AES

• Data Encryption Standard (DES)

- developed ~1977 by IBM, with NSA involvement
- widely used, though lingering concerns about trap doors
- 56-bit key is now too short:
 can exhaustively test all keys in a few hours
 with comparatively cheap special-purpose hardware
- "triple DES" uses 3 DES encryptions to increase effective key length

Advanced Encryption Standard (AES)

- result of an international competition run by NIST (www.nist.gov/aes)
- completely open: algorithms and analyses in public domain
- Rijndael: winning algorithm selected October 2000 approved as official US government standard
- 128, 192, 256-bit keys
- fast in both hardware and software implementations

Advanced Encryption Standard (AES)

• Rijndael

- Joan Daemen & Vincent Rijmen, Belgium
- 128, 192, 256-bit keys

Public key cryptography

- fundamentally new idea
 - Diffie & Hellman (USA, 1976); earlier in England but kept secret
- \cdot each person has a public key and a private key
 - the keys are mathematically related
 - a message encrypted with one can only be decrypted with the other
- public keys are published, visible to everyone
- private keys are secret, known only to owner
- Alice sends a secret message to Bob by
 - encrypting it with Bob's public key
 - only Bob can decrypt it, using his private key
- Bob sends a secret reply to Alice by
 - encrypting it with Alice's public key
 - only Alice can decrypt it, using her private key

Digital signatures

- can use public key cryptography for digital signatures
 - if Alice encrypts a message with her private key
 - and it decodes properly with her public key
 - it had to be Alice who encoded it
- signature can be attached to a message
 - Alice encrypts a message with her private key
 - Alice encrypts the result with Bob's public key
 - only Bob can decrypt this (with his private key) but it won't make any sense yet
 - Bob then decrypts it with Alice's public key
 - if it decodes properly, it had to be Alice who encrypted it originally
- necessary properties of digital signatures
 - can only be done by the right person: can't be forged
 - can't re-use a signature to sign something else
 - signature attached to a document: signs specific contents
 - signature can't be repudiated

Digital signatures, continued

- usually done by signing a "cryptographic hash" of a document, not the document itself
- secure hash is computed by an algorithm
- reduces any data to a comparatively short number such that
 - can't deduce the original document from the number
 - any change to the original document produces a completely different hash
 - can't find another document that has the same hash
- current secure hash algorithms
 - MD5 (Rivest, MIT): 128 bits
 - SHA-1 (US government standard): 160 bits
- new international competition to create a new version of SHA-1
 - analogous to AES competition (again run by NIST)
 - first round submissions 10/31/08
 - e.g., http://www.securityfocus.com/news/11536?ref=rss

RSA public key cryptographic algorithm

- most widely used public key system
- invented by Ron Rivest, Adi Shamir, Len Adleman, 1977?
 patent expired Sept 2000, now in public domain
- based on (apparent) difficulty of factoring very large integers
 - "large" >= 1024 bits ~ 300 digits
 - public key based on product of two large (secret) primes
 - encrypting and decrypting require knowledge of the factors
- slow, so usually use RSA to exchange a secret "session key"
 - session key used for secret key encryption with AES
 - used by SSH for secure login
 - used by browsers for secure exchange of credit card numbers https: http with encryption
 - SSL (Secure Sockets Layer) or TLS (Transport Layer Security) used to encrypt TCP/IP

Public key personae

Martin Hellman,
 Whitfield Diffie

• Adi Shamir, Ron Rivest, Len Adleman

How does RSA work? (you are not expected to remember this)

- choose two big primes p and q (~100 digits each)
- compute N = $p \times q$ (~200 digits)
- select e, relatively prime to $(p-1) \times (q-1)$
- compute d such that $e \times d = 1 \mod (p-1) \times (q-1)$
- public key is (e, N), private key is d
- to encode message m, $c = m^e \mod N$
- to decode message c, $m = c^d \mod N$
- decoding is easy if you know d, but hard if you don't:
 - you have to figure out p-1 and q-1
 - so you have to figure out p and q
 - so you have to factor N
 - and that's too hard

A tiny example

•	p = 17, q = 11	(primes)
•	N = 17 × 11 = 187	
•	e = 7 (relatively	prime to p-1 \times q-1 = 16 \times 10 =
•	d = 23 (7 × 23 =	161 = 1 mod 160)
•	public key is (7, 187);	private key is 23
•	to encode "X" (88 in as compute 88 ⁷ mod	scii), 187 = 11
•	to decrypt 11, compute 11 ²³ mod	1 187 = 88

160)

Properties of public/private keys

- can't deduce the public key from the private, or vice versa
- \cdot can't find another encryption key that works with the decryption key
- keys are long enough that brute force search is infeasible
- nasty problems:
 - if a key is lost, all messages and signatures are lost
 - if a key is compromised, all messages and signatures are compromised
 - it's hard to revoke a key
 - it's hard to repudiate a key (and hard to distinguish that from revoking)

• authentication

- how do you know who you are talking to? is that really Alice's public key?
- public key infrastructure, web of trust, digital certificates

Crypto politics

- cryptographic techniques as weapons of war?
 - until recently, (strong) cryptography was classified as "munitions" in USA
 - falls under International Traffic in Arms Regulations and follow-ons
- · export control laws prohibited export of cryptographic code
 - though it was ok to export books and T-shirts with code and everyone else in the world had it anyway
 - changed during 2000, but there are still restrictions
- does the government have the right/duty ...
 - to control cryptographic algorithms and programs?
 - to require trapdoors, key escrow, or similar mechanisms?
 - to prevent reverse-engineering of cryptographic devices?
 - to prevent research in cryptographic techniques?
- do corporations have the right ...
 - to prevent publication of cryptographic techniques?
 - to prevent reverse-engineering of cryptographic devices?
- how do we balance individual rights, property rights, & societal rights?

Summary of crypto

- secret/symmetric key algorithms: DES, AES
 - key distribution problem: everyone has to have the key
- public key algorithms: RSA, ...
 - solves key distribution problem, but authentication is still important
 - also permits digital signatures
 - much slower than secret key, so used mainly for key exchange
- · security is entirely in the key
 - "security by obscurity" does not work: bad guys know everything
 - brute force attacks work if keys are too short or easy
- good cryptography is hard
 - you can't invent your own methods
 - you can't trust "secret" or proprietary methods
- people are the weak link
 - complicated or awkward systems will be subverted, ignored or misused
 - social engineering attacks are effective ignorance, incompetence, misguided helpfulness
- if all else fails, try bribery, burglary, blackmail, brutality