Protocols

- precise rules that govern communication between two parties
- TCP/IP: the basic Internet protocols
- IP: Internet protocol (bottom level)
 - all packets shipped from network to network as IP packets
 - no guarantees on quality of service or reliability: "best effort"
 - each physical network has its own format for carrying IP packets
- TCP: transmission control protocol
 - creates a reliable 2-way data stream using IP
 - errors are detected and corrected
 - most things we think of as "Internet" use TCP
- "application-level" protocols, mostly built from TCP
 - HTTP (web), SMTP (mail), SSH (secure login), FTP (file transfer), ...

- UDP: user datagram protocol
 - simple unreliable datagram protocol (errors not detected)
 - used in DNS, remote file systems, ...

Packets

- packet: a sequence of bytes carrying information
 - usually over a network connection
- bytes have a specific sequence, format, organization
 - usually as specified in a protocol
- typical network packet includes
 - source (where it comes from)
 - destination (where it goes to)
 - size or length information (how big is the data part)
 - miscellaneous information (type, version, info to detect errors, ...)
 - the data itself ("payload")
- typical sizes range from
 - a few bytes
 - 150-1500 (Ethernet packets)
 - 100-65000 (IP packets)
What's in an IP packet

- **a "header" that contains**
 - protocol version, type of packet, length of header, length of data
 - fragmentation info in case it was broken into pieces
 - time to live: maximum number of hops before packet is discarded
 - each gateway decreases this by 1
 - source & destination addresses (32 bits for IPv4, 128 bits for IPv6)
 - checksum of header information
 - redundant info to detect errors in header information only, not data itself
 - etc.; about 20-40 bytes in header

- **actual data**
 - up to 64 KB of payload
 - IPv4:

<table>
<thead>
<tr>
<th>version</th>
<th>type</th>
<th>hdr len</th>
<th>total len</th>
<th>frag</th>
<th>TTL</th>
<th>source address</th>
<th>dest address</th>
<th>chk</th>
<th>data...</th>
</tr>
</thead>
</table>

IP: Internet Protocol

- **IP provides an unreliable connectionless packet delivery service**
 - every packet has full source & destination addresses
 - every packet is independent of all others

- **IP packets are datagrams**
 - individually addressed packages, like postcards in the postal system
 - "connectionless"
 - stateless: no memory from one packet to next
 - each packet is independent of others, even if in sequence and going same place
 - unreliable: packets can be lost or duplicated ("best effort" delivery)
 - packets can be delivered out of order
 - contents can be wrong (though error rates are usually very low)
 - no speed control: packets can arrive too fast to be processed
 - limited size: long messages have to be split up and then reassembled

- higher level protocols use IP packets to carry information
- **IP packets are carried on a wide variety of physical media**
TCP: Transmission Control Protocol

- a reliable 2-way byte stream built with IP
- a TCP connection is established to a specific host
 - and a specific "port" at that host
- each port provides a specific service
 - SSH = 22, SMTP = 25, HTTP = 80, ...

- a message is broken into 1 or more packets
- each TCP packet has a header (src, dest, etc) + data
 - header includes checksum for error detection, and sequence number to preserve order and detect missing or duplicated packets
- each TCP packet is wrapped in an IP packet and sent
 - has to be positively acknowledged to ensure that it arrived safely
 - otherwise, re-send it after a time interval

- TCP is the basis of most higher-level protocols

Higher level protocols

- SSH: secure login
- SMTP: mail transfer
- HTTP: hypertext transfer -> Web
- protocol layering:
 - a single protocol can’t do everything
 - higher-level protocols build elaborate operations out of simpler ones
 - each layer uses only the services of the one directly below
 - and provides the services expected by the layer above
 - all communication is between peer levels: layer N destination receives exactly the object sent by layer N source
Encapsulation

- each piece of data at one level is wrapped up with a header and sent as a packet at the next lower level
- lowest level is what moves across specific network

```
  data

  HTTP  data

  TCP  data

  IP  data

  ether  data
```

How are things connected?

- local nets connected to local Internet Service Provider (ISP)
- these in turn connect to regional ISPs
- and then to larger ones like UUNet, AT&T, Sprint, ...
- traffic exchanged at Internet exchanges
 - large and small, formal and informal, profit and non-profit

- bandwidth (bit-carrying capacity) of connections is usually higher the larger the ISP
 - phone line analog modem 56 Kbps (you to your ISP)
 - cable modem, DSL 500 Kbps - 3MBps (you to your ISP)
 - telephone lines 1.5-45 Mbps (local ISP, big company to ISP)
 - optical fiber 155 Mbps and up (large carriers)
Typical home connection

Coping with bandwidth limits

- data flows no faster than the slowest link
- limits to how much data can pass per unit time
 - no guarantees about packet delivery
 - no bandwidth, delay or quality of service guarantees
 - IP telephony is hard because voice traffic requires limited delay, jitter
 - video is somewhat easier but needs a lot more bandwidth
- caching
 - save previous data so it doesn’t have to be retrieved again
- compression, encoding
 - to improve use of available bandwidth
 - don’t send redundant or unnecessary information
 - text, code, etc., can be compressed and recreated exactly
 - music, pictures, movies are compressed with some information discarded
- home connectivity
 - telephone modem 56 Kbps
 - ADSL, cable modem 1-4 Mbps
 - wireless 1-50 Mbps
 - fiber 50 Mbps?
Internet Ideas

- **packets versus circuits**
 - different models (mail vs phone)
- **names and addresses**
 - what is it called, how to find it
- **routing**
 - how to get from here to there
- **protocols and standards**
 - Internet works because of IP as common mechanism
 - higher level protocols all use IP
 - specific hardware technologies carry IP packets
- **layering**
 - divide system into layers
 - each of which provides services to next higher level
 - while calling on service of next lower level
 - a way to organize and control complexity, hide details

Internet technical issues:

- **privacy & security are hard**
 - data passes through shared unregulated dispersed media and sites scattered over the whole world
 - it’s hard to control access & protect information along the way
 - many network technologies (e.g., Ethernet, wireless) use broadcast encryption necessary to maintain privacy
 - many mechanisms are not robust against intentional misuse
 - it’s easy to lie about who you are
- **service guarantees are hard**
 - no assurance of reliable delivery, let alone of bandwidth, delay or jitter
- **some resources are running low**
 - especially IPv4 addresses
 - IPv6 (the next generation) uses 128-bit addresses
 - acceptance has been slow but is growing
- **but it has handled exponential growth amazingly well**