
Sinfonia: a new paradigm for
building scalable distributed systems

Marcos K. Aguilera∗ Arif Merchant∗ Mehul Shah∗ Alistair Veitch∗ Christos Karamanolis†
∗HP Laboratories, Palo Alto, CA, USA †VMware, Palo Alto, CA, USA

ABSTRACT
We propose a new paradigm for building scalable distributed sys-
tems. Our approach does not require dealing with message-passing
protocols—a major complication in existing distributed systems.
Instead, developers just design and manipulate data structures
within our service called Sinfonia. Sinfonia keeps data for appli-
cations on a set of memory nodes, each exporting a linear address
space. At the core of Sinfonia is a novel minitransaction primitive
that enables efficient and consistent access to data, while hiding the
complexities that arise from concurrency and failures. Using Sinfo-
nia, we implemented two very different and complex applications
in a few months: a cluster file system and a group communication
service. Our implementations perform well and scale to hundreds
of machines.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed sys-
tems—Distributed applications; E.1 [Data Structures]: Dis-
tributed data structures

General Terms
Algorithms, Design, Experimentation, Performance, Reliability

Keywords
Distributed systems, scalability, fault tolerance, shared memory,
transactions, two-phase commit

1. INTRODUCTION
Developers often build distributed systems using the message-

passing paradigm, in which processes share data by passing mes-
sages over the network. This paradigm is error-prone and hard to
use because it involves designing, implementing, and debugging
complex protocols for handling distributed state. Distributed state
refers to data that application hosts need to manipulate and share
with one another, such as metadata, tables, and configuration and
status information. Protocols for handling distributed state include
protocols for replication, file data and metadata management, cache
consistency, and group membership. These protocols are highly
non-trivial to develop.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07, October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

application
node

application
node

application
node

application
node

minitransactions

S
in

fo
ni

a user
library

memory
node

memory
node

memory
node

Figure 1: Sinfonia allows application nodes to share data in a fault
tolerant, scalable, and consistent manner.

We propose a new paradigm for building scalable distributed
systems. With our scheme, developers do not have to deal with
message-passing protocols. Instead, developers just design and ma-
nipulate data structures within our service, called Sinfonia. We
therefore transform the problem of protocol design into the much
easier problem of data structure design. Our approach targets par-
ticularly data center infrastructure applications, such as cluster file
systems, lock managers, and group communication services. These
applications must be fault-tolerant and scalable, and must provide
consistency and reasonable performance.

In a nutshell, Sinfonia is a service that allows hosts to share ap-
plication data in a fault-tolerant, scalable, and consistent manner.
Existing services that allow hosts to share data include database
systems and distributed shared memory (DSM). Database systems
lack the performance needed for infrastructure applications, where
efficiency is vital. This is because database systems provide more
functionality than needed, resulting in performance overheads. For
instance, attempts to build file systems using a database system [24]
resulted in an unusable system due to poor performance. Existing
DSM systems lack the scalability or fault tolerance required for
infrastructure applications. Section 8 discusses some of the DSM
systems closest to Sinfonia.

Sinfonia seeks to provide a balance between functionality and
scalability. The key to achieving scalability is to decouple opera-
tions executed by different hosts as much as possible, so that op-
erations can proceed independently. Towards this goal, Sinfonia
provides fine-grained address spaces on which to store data, with-
out imposing any structure, such as types, schemas, tuples, or ta-
bles, which all tend to increase coupling. Thus, application hosts
can handle data in Sinfonia relatively independently of each other.
To prevent Sinfonia from becoming a bottleneck, Sinfonia itself is
distributed over multiple memory nodes (Figure 1), whose number
determines the space and bandwidth capacity of Sinfonia.

At the core of Sinfonia is a lightweight minitransaction primitive
that applications use to atomically access and conditionally modify

data at multiple memory nodes. For example, consider a cluster
file system, one of the applications we built with Sinfonia. With
a minitransaction, a host can atomically populate an inode stored
in one memory node and link this inode to a directory entry stored
in another memory node, and these updates can be conditional on
the inode being free (to avoid races). Like database transactions,
minitransactions hide the complexities that arise from concurrent
execution and failures.

Minitransactions are also useful for improving performance, in
many ways. First, minitransactions allow users to batch together
updates, which eliminates multiple network round-trips. Second,
because of their limited scope, minitransactions can be executed
within the commit protocol. In fact, Sinfonia can start, execute,
and commit a minitransaction with two network round-trips. In
contrast, database transactions, being more powerful and higher-
level, require two round-trips just to commit, plus additional round-
trips to start and execute. Third, minitransactions can execute in
parallel with a replication scheme, providing availability with little
extra latency.

We demonstrate Sinfonia by using it to build two complex ap-
plications that are very different from each other: a cluster file sys-
tem called SinfoniaFS and a group communication service called
SinfoniaGCS. These applications are known to be difficult to im-
plement in a scalable and fault-tolerant fashion: systems achieving
these goals tend to be very complicated and are the result of years
of effort. Using Sinfonia, we built them with 3900 and 3500 lines
of code, in one and two man-months, respectively. In SinfoniaFS,
Sinfonia holds file system data, and each node in the cluster uses
minitransactions to atomically retrieve and update file data and at-
tributes, and allocate and deallocate space. In SinfoniaGCS, Sin-
fonia stores ordered messages broadcast by users, and users use
minitransactions to add new messages to the ordering.

Experiments show that Sinfonia and its applications scale well
and perform competitively. Sinfonia can execute thousands of
minitransactions per second at a reasonable latency when running
over a single node, and the throughput scales well with system size.
SinfoniaFS over a single memory node performs as well as an NFS
server and, unlike an NFS server, SinfoniaFS scales well to hun-
dreds of nodes. SinfoniaGCS scales better than Spread [1], a high-
throughput implementation of a group communication service.

2. ASSUMPTIONS AND GOALS
We consider distributed systems within a data center. A data

center is a site with many fairly well-connected machines. It can
have from tens to thousands of machines running from tens to hun-
dreds of applications. Network latencies are small and have little
variance most of the time, unlike in a completely asynchronous en-
vironment. Network partitions may occur within a data center, but
this is rare; while there is one, it is acceptable to pause applica-
tions since, most likely, the data center is unusable. Applications
in the data center and their designers are trustworthy, rather than
malicious. (Access control is an orthogonal concern that could be
incorporated in Sinfonia, but we have not done so.) Note that these
assumptions do not hold in wide area networks, peer-to-peer sys-
tems, or the Internet as a whole.

The data center is subject to failures: a node may crash some-
times and, more rarely, all nodes may crash (e.g., due to power
outages), and failures may occur at unpredictable times. Individual
machines are reliable, but crashes are common because there are
many machines. We do not consider Byzantine failures. Disks pro-
vide stable storage, that is, disks provide sufficient reliability for
the target application. This may require choosing disks carefully;
choices vary from low-cost disks to high-end disk arrays. Stable

storage may crash, and one needs to deal with it, but such crashes
are relatively rare.

Our goal is to help developers build distributed infrastructure ap-
plications, which are applications that support other applications.
Examples include lock managers, cluster file systems, group com-
munication services, and distributed name services. These applica-
tions need to provide reliability, consistency, and scalability. Scal-
ability is the ability to increase system capacity proportionately to
system size. In this paper, capacity refers to processing capacity,
which is measured by total throughput.

3. DESIGN
We now describe Sinfonia and its principles and design.

3.1 Principles
The design of Sinfonia is based on two principles:
Principle 1. Reduce operation coupling to obtain scalability.

Coupling refers to the interdependence that operations have on each
other, which limits parallel execution on different hosts, and hence
hinders scalability. Sinfonia avoids operation coupling by not im-
posing structure on the data it services.

Principle 2. Make components reliable before scaling them. We
first make individual Sinfonia nodes fault-tolerant, and only then
scale the system by adding more nodes. Thus, we avoid the com-
plexities of a large system with many unreliable components.

3.2 Basic components
Sinfonia consists of a set of memory nodes and a user library that

runs at application nodes (Figure 1). Memory nodes hold applica-
tion data, either in RAM or on stable storage, according to applica-
tion needs. The user library implements mechanisms to manipulate
data at memory nodes. It is possible to place a memory node and
an application node in the same host, but they are logically distinct.

Each memory node keeps a sequence of raw or uninterpreted
words of some standard length; in this paper, word length is 1 byte.
These bytes are organized as a linear address space without any
structure. Each memory node has a separate address space, so that
data in Sinfonia is referenced through a pair (memory-node-id, ad-
dress). We also tried a design with a single global address space
that is transparently mapped to memory nodes, but this design did
not scale because of the lack of node locality. Node locality refers
to placing data that is accessed together in the same node. For ex-
ample, our cluster file system makes an effort to place an inode, its
chaining list, and its file data in the same memory node (if space
permits). This would be difficult with a transparent mapping of a
single address space. Node locality is the opposite of data striping,
which spreads data accessed together over many nodes. Data strip-
ing improves single-user throughput, but our experiments show that
it impairs scalability.

Application nodes access data in Sinfonia through a user library.
The user library provides basic read/write of a byte range on a sin-
gle memory node, as well as minitransactions, described next.

3.3 Minitransactions
Minitransactions allow an application to update data in multiple

memory nodes while ensuring atomicity, consistency, isolation, and
(if wanted) durability. Atomicity means that a minitransaction ex-
ecutes completely or not at all; consistency means that data is not
corrupted; isolation means that minitransactions are serializable;
and durability means that committed minitransactions are not lost,
even if there are failures.

We tuned the power of minitransactions so that they can execute
efficiently while still being quite useful. To explain how we did
that, we first describe how standard distributed transactions execute

write items

compare items

...

addr datalenmem-id

addr datalenmem-id

...

addr datalenmem-id

addr datalenmem-id

M
in

it
ra

n
sa

ct
io

n

read items

...

addr lenmem-id

addr lenmem-id

class Minitransaction {
public:
void cmp(memid,addr,len,data); // add

void write(memid,addr,len,data); // add
int exec_and_commit(); // execute and commit

};

cmp item

write item
void read(memid,addr,len,buf); // add read item

...
t = new Minitransaction;
t->cmp(memid, addr, len, data);
t->write(memid, addr, len, newdata);
status = t->exec_and_commit();
...

API Example

�

�

check data indicated by
(equality comparison)

if all match then
retrieve data indicated by
modify data indicated by

compare items

read items
write items

Semantics of a minitransaction

Figure 2: Minitransactions have compare items, read items, and
write items. Compare items are locations to compare against given
values, while read items are locations to read and write items are
locations to update, if all comparisons match. All items are speci-
fied before the minitransaction starts executing. The example code
creates a minitransaction with one compare and one write item on
the same location—a compare-and-swap operation. Methods cmp,
read, and write populate a minitransaction without communication
with memory nodes until exec_and_commit is invoked.

and commit. Roughly speaking, a coordinator executes a transac-
tion by asking participants to perform one or more transaction ac-
tions, such as retrieving or modifying data items. At the end of
the transaction, the coordinator executes two-phase commit. In the
first phase, the coordinator asks all participants if they are ready to
commit. If they all vote yes, in the second phase the coordinator
tells them to commit; otherwise the coordinator tells them to abort.
In Sinfonia, coordinators are application nodes and participants are
memory nodes.

We observe that it is possible to optimize the execution of some
transactions, as follows. If the transaction’s last action does not
affect the coordinator’s decision to abort or commit then the coor-
dinator can piggyback this last action onto the first phase of two-
phase commit (e.g., this is the case if this action is a data update).
This optimization does not affect the transaction semantics and
saves a communication round-trip.

Even if the transaction’s last action affects the coordinator’s de-
cision to abort or commit, if the participant knows how the coor-
dinator makes this decision, then we can also piggyback the action
onto the commit protocol. For example, if the last action is a read
and the participant knows that the coordinator will abort if the read
returns zero (and will commit otherwise), then the coordinator can
piggyback this action onto two-phase commit and the participant
can read the item and adjust its vote to abort if the result is zero.

In fact, it might be possible to piggyback the entire transaction
execution onto the commit protocol. We designed minitransactions
so that this is always the case and found that it is still possible to
get fairly powerful transactions.

More precisely, a minitransaction (Figure 2) consists of a set of
compare items, a set of read items, and a set of write items. Each
item specifies a memory node and an address range within that
memory node; compare and write items also include data. Items
are chosen before the minitransaction starts executing. Upon exe-

cution, a minitransaction does the following: (1) compare the loca-
tions in the compare items, if any, against the data in the compare
items (equality comparison), (2) if all comparisons succeed, or if
there are no compare items, return the locations in the read items
and write to the locations in the write items, and (3) if some com-
parison fails, abort. Thus, the compare items control whether the
minitransaction commits or aborts, while the read and write items
determine what data the minitransaction returns and updates.

Minitransactions are a powerful primitive for handling dis-
tributed data. Examples of minitransactions include the following:

1. Swap. A read item returns the old value and a write item
replaces it.

2. Compare-and-swap. A compare item compares the current
value against a constant; if equal, a write item replaces it.

3. Atomic read of many data. Done with multiple read items.
4. Acquire a lease. A compare item checks if a location is set

to 0; if so, a write item sets it to the (non-zero) id of the
leaseholder and another write item sets the time of lease.

5. Acquire multiple leases atomically. Same as above, except
that there are multiple compare items and write items. Note
that each lease can be in a different memory node.

6. Change data if lease is held. A compare item checks that a
lease is held and, if so, write items update data.

A frequent minitransaction idiom is to use compare items to vali-
date data and, if data is valid, use write items to apply some changes
to the same or different data. These minitransactions are common
in SinfoniaFS: the file system caches inodes and metadata aggres-
sively at application nodes, and relevant cached entries are vali-
dated before modifying the file system. For example, writing to a
file requires validating a cached copy of the file’s inode and chain-
ing list (the list of blocks comprising the file) and, if they are valid,
modifying the appropriate file block. This is done with compare
items and write items in a minitransaction. Figure 7 shows a mini-
transaction used by SinfoniaFS to set a file’s attributes.

Another minitransaction idiom is to have only compare items to
validate data, without read or write items. Such a minitransaction
modifies no data, regardless of whether it commits or aborts. But
if it commits, the application node knows that all comparisons suc-
ceeded and so the validations were successful. SinfoniaFS uses
this type of minitransaction to validate cached data for read-only
file system operations, such as stat (NFS’s getattr).

In Section 4 we explain how minitransactions are executed and
committed efficiently. It is worth noting that minitransactions can
be extended to include more general read-modify-write items (not
just write items) and generic conditional items (not just compare
items) provided that each item can be executed at a single memory
node. For example, there could be an increment item that atomi-
cally increments a location; and a minitransaction could have mul-
tiple increment items, possibly at different memory nodes, to in-
crement all of them together. These extensions were not needed
for the applications in this paper, but they may be useful for other
applications.

3.4 Caching and consistency
Sinfonia does not cache data at application nodes, but provides

support for applications to do their own caching. Application-
controlled caching has three clear advantages: First, there is greater
flexibility on policies of what to cache and what to evict. Second, as
a result, cache utilization potentially improves, since applications
know their data better than what Sinfonia can infer. And third,
Sinfonia becomes a simpler service to use because data accessed
through Sinfonia is always current (not stale). Managing caches in

Mode RAM RAM-REPL LOG LOG-REPL NVRAM NVRAM-REPL

Description disk image off disk image off disk image on disk image on disk image on disk image on
log off log off log on disk log on disk log on nvram log on nvram
replication off replication on replication off replication on replication off replication on
backup optional backup optional backup optional backup optional backup optional backup optional

Memnode 1 host 2 hosts 1 host, 2 disks(c) 2 hosts, 4 disks(d) 1 host, 1 disk, 2 hosts, 2 disks,
resources nvram nvram(d)

Memnode space RAM available RAM available disk size disk size disk size disk size
Fault tolerance(a) •app crash •app crash •app crash •app crash •app crash •app crash

•few memnode •all memnode •few memnode •all memnode •few memnode
crashes crashes but with crashes crashes but with crashes

downtime •all memnode downtime •all memnode
crashes but with crashes but with
downtime downtime

Performance(b) first second third fourth first second

Figure 3: Trading off fault tolerance for amount of resources and performance. Each column is a mode of operation for Sinfonia.
Notes: (a) ‘App crash’ means tolerating crashes of any number of application nodes. ‘Few memnode crashes’ means tolerating crashes
of memory nodes as long as not all replicas crash. ‘Downtime’ refers to blocking until recovery. (b) For exact performance numbers see
Section 7.1.1. (c) Logging on disk uses a disk just for the log, to benefit from sequential writes. (d) If we colocate a memory node with the
replica of another memory node, they can share the log disk and the image disk. This halves the total number of disks and hosts needed.

a distributed system can be a challenge for applications, but Sin-
fonia minitransactions simplify this, by allowing applications to
atomically validate cached data and apply updates, as explained
in Section 3.3.

3.5 Fault tolerance
Sinfonia provides fault tolerance in accordance with application

needs. At the very least, crashes of application nodes never affect
data in Sinfonia (minitransactions are atomic). In addition, Sinfo-
nia offers some optional protections:

• Masking independent failures. If a few memory nodes crash,
Sinfonia masks the failures so that the system continues
working with no downtime.

• Preserving data on correlated failures. If many memory
nodes crash in a short period (e.g., in a power outage) without
losing their stable storage, Sinfonia ensures that data is not
lost, but the system may be unavailable until enough memory
nodes restart.

• Restoring data on disasters. If memory nodes and their sta-
ble storage crash (e.g., due to a disaster), Sinfonia recovers
data using a transactionally-consistent backup.

With all protections enabled, the system remains available if
there are few failures, the system loses no data if there are many
failures, and the system loses non-backed up data if there are dis-
asters. To provide fault tolerance, Sinfonia uses four mechanisms:
disk images, logging, replication, and backup. A disk image keeps
a copy of the data at a memory node; the space capacity of a mem-
ory node is as large as the disk size. For efficiency, the disk image
is written asynchronously and so may be slightly out-of-date. To
compensate for that, a log keeps recent data updates, and the log
is written synchronously to ensure data durability. The log can be
stored on disk or non-volatile RAM (NVRAM), if available. When
a memory node recovers from a crash, it uses a recovery algorithm
to replay the log. This is transparent to applications, but recov-
ery takes time and makes the system unavailable. To provide high
availability, Sinfonia replicates memory nodes, so that if a memory
node fails, a replica takes over without downtime. Currently, Sin-
fonia uses primary-copy replication (e.g., [3]), but it is possible to
use instead state machines and Paxos [19] to rely less on synchrony.
Replicas are synchronized in parallel with minitransaction execu-
tion for efficiency. Backups can be made from a transactionally-
consistent image of Sinfonia data. This image is generated with-

out pausing applications, by using the log to buffer updates while
writes to disk are flushed.

Figure 3 shows various Sinfonia modes of operation based on
which of the above mechanisms are used. Modes differ only on
their fault tolerance, memory node space, and performance, not on
the application interface. Modes RAM and RAM-REPL store memory
node data in RAM memory only, while other modes use disk and/or
NVRAM.

3.6 Other design considerations
Load balancing. By design, Sinfonia lets applications choose

where to place application data, in order to improve node local-
ity. As a corollary, Sinfonia does not balance load across mem-
ory nodes—this is left to applications. To assist applications, Sin-
fonia provides per-memory-node load information to applications,
including bytes read and written and minitransactions executed, re-
tried, and aborted in various time frames (e.g., 5s, 1min, 10min, 1h,
12h). Applications can tag each minitransaction with a class iden-
tifier, and load information is provided separately for each class.
Load balancing sometimes entails migrating data; for that, mini-
transactions can migrate many pieces of data atomically, without
exposing inconsistencies due to partial migration. However, appli-
cation developers still have to choose and implement a migration
policy (when and where to migrate)—which is probably applica-
tion specific in any case.

Colocation of data and computation. In some applications, it
may be important to colocate data and computation for best perfor-
mance. This is very easy in Sinfonia: one simply places an applica-
tion node in the same host as a memory node, and the application
node biases placement of its data toward its local memory node;
Sinfonia informs the application which memory node is local, if
any. In this paper, however, we do not colocate application and
memory nodes.

4. IMPLEMENTATION AND ALGORITHMS
We now explain how Sinfonia is implemented, including details

of our two-phase protocol to execute and commit minitransactions.
This protocol differs from standard two-phase commit in several
ways: it reflects some different failure assumptions in Sinfonia,
it requires new schemes for recovery and garbage collection, and
it incorporates minitransaction execution and a technique to avoid
minitransaction deadlocks.

4.1 Basic architecture
Recall that Sinfonia comprises a set of memory nodes and a

user library at each application node. The user library communi-
cates with memory nodes through remote procedure calls, on top
of which we run the minitransaction protocol. Memory nodes run
a server process that keeps Sinfonia data and the minitransaction
redo-log; it also runs a replication protocol.

4.2 Minitransaction protocol overview
Our minitransaction protocol integrates execution of the mini-

transaction into the commit protocol for efficiency. The idea is to
piggyback the transaction into the first phase of two-phase com-
mit. This piggybacking is not possible for arbitrary transactions,
but minitransactions were defined so that it is possible for them.

Our two-phase commit protocol also reflects new system fail-
ure assumptions. In standard two-phase commit, if the coordina-
tor crashes, the system has to block until the coordinator recovers.
This is undesirable in Sinfonia: if the coordinator crashes, we may
need to recover without it because coordinators run on application
nodes, not Sinfonia memory nodes, and so they may be unstable,
subject to reboots, or their recovery could be unpredictable and un-
sure. The traditional way to avoid blocking on coordinator crashes
is to use three-phase commit [32], but we want to avoid the extra
phase.

We accomplish this by blocking on participant crashes instead of
coordinator crashes. This is reasonable for Sinfonia because partic-
ipants are memory nodes that keep application data, so if they go
down and the application needs to access data, the application has
to block anyway. Furthermore, Sinfonia can optionally replicate
participants (memory nodes), so that minitransactions are blocked
only if there is a crash of the “logical participant”, as represented
by all its replicas.

In our two-phase commit protocol, the coordinator has no log,
and we consider a transaction to be committed if all participants
have a yes vote in their log. Standard two-phase commit requires
a yes vote in the coordinator log. This modification, however,
complicates the protocols for recovery and log garbage collection,
which we cover in Sections 4.4–4.7.

To ensure serializability, participants lock the locations accessed
by a minitransaction during phase 1 of the commit protocol. Locks
are only held until phase 2 of the protocol, a short time. Lock gran-
ularity is a word, but we use range data structures to efficiently
keep track of locked ranges. To avoid deadlocks, we use a simple
scheme: a participant tries to acquire locks without blocking; if it
fails, it releases all locks and votes “abort due to busy lock”. This
vote causes the coordinator to abort the minitransaction and retry
after some random exponentially-increasing delay. This scheme is
not appropriate when there is high contention, but otherwise it is
efficient. Another deadlock-avoidance scheme is to acquire locks
in some predefined order, but with that scheme, the coordinator in
phase 1 has to contact participants in series (to ensure lock order-
ing), which could incur many extra network round-trips.

4.3 Minitransaction protocol details
Recall that a minitransaction has compare items, read items, and

write items (Figure 2). Compare items are locations to be tested for
equality against supplied data; if any test fails, the minitransaction
aborts. If the minitransaction commits, read items are locations to
be read and returned, while write items are locations to be written.

Application nodes execute and commit minitransactions using
the two-phase protocol in Figure 4. Phase 1 executes and prepares
the minitransaction, while phase 2 commits it. More precisely, in
phase 1, the coordinator (application node) generates a new transac-

Code for coordinator p:

To execute and commit minitransaction (cmpitems, rditems, writems)
1 tid ← new unique identifier for minitransaction

{ Phase 1 }
2 D ← set of memory nodes referred in cmpitems ∪ rditems ∪ writems
3 pfor each q ∈ D do { pfor is a parallel for }
4 send (EXEC&PREPARE , tid, D,

πq(cmpitems), πq(rditems), πq(writems)) to q
5 { πq denotes the projection to the items handled by q }
6 replies← wait for replies from all nodes in D

7 { Phase 2 }
8 if ∀q∈D : replies[q].vote=OK then action← true { commit }
9 else action ← false { abort }
10 pfor each q ∈ D do send (COMMIT , tid, action) to q
11 return action { does not wait for reply of COMMIT }

Code for each participant memory node q:

upon receive (EXEC&PREPARE , tid, D, cmpitems, rditems, writems) from p do
12 in-doubt ← in-doubt ∪ {(tid, cmpitems, rditems, writems)}
13 if try-read-lock(cmpitems ∪ rditems)=fail or try-write-lock(writems)=fail
14 then vote← BAD-LOCK

15 else if tid ∈ forced-abort then vote← BAD-FORCED

16 { forced-abort is used with recovery }
17 else if cmpitems do not match data then vote← BAD-CMP

18 else vote← OK

19 if vote=OK then
20 data← read rditems
21 add (tid, D, writems) to redo-log and add tid to all-log-tids
22 else
23 data← ∅
24 release locks acquired above
25 send-reply (tid, vote, data) to p

upon receive (COMMIT , tid, action) from p do { action: true=commit, false=abort }
26 (cmpitems, rditems, writems)← find (tid, ∗, ∗, ∗) in in-doubt
27 if not found then return { recovery coordinator executed first }
28 in-doubt ← in-doubt − {(tid, cmpitems, rditems, writems)}
29 if tid ∈ all-log-tids then decided← decided ∪ {(tid, action)}
30 if action then apply writems
31 release any locks still held for cmpitems ∪ rditems ∪ writems

participant 1

participant 2

participant 3

coordinator
A C

B

E
X

E
C

&
P

R
E

PA
R

E

C
O

M
M

ITvote

D
assemble minitransactionA

acquire locks, perform comparisons,
choose vote, if voting to commit then
read and log minitransaction,
otherwise release locks

read items

B

choose outcomeC

if committing apply
release locks held for minitransaction

write itemsthenD

Figure 4: Protocol for executing and committing minitransactions.

tion id (tid) and sends the minitransaction to the participants (mem-
ory nodes). Each participant then (a) tries to lock the addresses of
its items in the minitransaction (without blocking), (b) executes the
comparisons in the compare items and, if all comparisons succeed,
performs the reads in the read items and buffers the write items, and
(c) decides on a vote as follows: if all locations could be locked and
all compare items succeeded, the vote is for committing, otherwise
it is for aborting. In phase 2, the coordinator tells participants to
commit if and only if all votes are for committing. If committing,
a participant applies the write items, otherwise it discards them. In
either case, the participant releases all locks acquired by the mini-
transaction. The coordinator never logs any information, unlike in
standard two-phase commit. If the minitransaction aborts because
some locks were busy, the coordinator retries the minitransaction
after a while using a new tid. This retrying is not shown in the
code.

Participants log minitransactions in the redo-log in the first phase
(if logging is enabled); logging occurs only if the participant votes
to commit. Only write items are logged, not compare or read items,
to save space. The redo-log in Sinfonia also serves as a write-ahead
log to improve performance.

Name Description On stable storage
redo-log minitransaction redo-log yes, sync
in-doubt tids not yet committed or aborted no
forced-abort tids forced to abort (by recovery) yes, sync
decided tids in redo-log with outcome yes, async
all-log-tids tids in redo-log no

Figure 5: Data structures kept at participants (memory nodes) for
recovery and garbage collection. Async/sync indicates whether
writes to stable storage are asynchronous or synchronous.

Participants keep an in-doubt list of undecided transaction tids,
a forced-abort list of tids that must be voted to abort, and a decided
list of finished tids and their outcome. These data structures are
used for recovery, as explained below. Figure 5 summarizes the
data structures kept by participants.

4.4 Recovery from coordinator crashes
If a coordinator crashes during a minitransaction, it may leave

the minitransaction with an uncertain outcome: one in which not
all participants have voted yet. To fix this problem, a recovery
mechanism is executed by a third-party, the recovery coordinator,
which runs at a dedicated management node for Sinfonia. The re-
covery scheme ensures the following: (a) it will not drive the sys-
tem into an unrecoverable state if the recovery coordinator crashes
or if there are memory node crashes during recovery; (b) it ensures
correctness even if there is concurrent execution of recovery with
the original coordinator (this might happen if recovery starts but
the original coordinator is still running); and (c) it allows concur-
rent execution by multiple recovery coordinators (this might hap-
pen if recovery restarts but a previous recovery coordinator is still
running).

To recover a minitransaction tid, the recovery coordinator tries to
abort tid since committing requires knowledge of the minitransac-
tion items, which the recovery coordinator does not have. More
precisely, the recovery coordinator proceeds in two phases. In
phase 1, it requests participants to vote “abort” on tid; each par-
ticipant checks if it previously voted on this minitransaction, and,
if so, it keeps its previous vote. Otherwise, the participant chooses
to vote “abort” and places tid in the forced-abort list, to remember
its vote in case the original coordinator later asks it to vote.1 In
either case, the participant returns its vote. In phase 2, the recov-
ery coordinator tells participants to commit if and only if all votes
are “commit”. Participants then commit or abort accordingly, and
release all locks acquired by the minitransaction. This is safe to
do, even if the original coordinator is still executing, because either
the minitransaction has already been committed, or it is forced to
abort.

How does the recovery coordinator get triggered in the first
place? The management node periodically probes memory nodes
for minitransactions in the in-doubt list that have not yet committed
after a timeout period, and starts recovery for them.

4.5 Recovery from participant crashes
When a participant memory node crashes, the system blocks any

outstanding minitransactions involving the participant until the par-
ticipant recovers2. If the participant loses its stable storage, one
must recover the system from a backup (Section 4.9 explains how
to produce transactionally-consistent backups). More frequently,
the participant recovers without losing its stable storage, in which

1Note that a participant serializes incoming requests from a coordinator and
a recovery coordinator for the same minitransaction.
2This is unlike two-phase commit for database systems, where the coordi-
nator may consider a dead participant as voting no.

case it proceeds to synchronize its disk image by replaying its redo-
log in order. The participant remains offline until this process com-
pletes. To avoid replaying a long redo-log, there is a processed-
pointer variable that gets periodically written to disk, which indi-
cates what parts of the redo-log are new; replay starts at this place.
Not every minitransaction in the redo-log should be replayed, only
those that committed. This is determined using the decided list,
which includes decided minitransactions and their outcome. The
decided list is written to disk asynchronously, so there may be a few
minitransactions that are in the redo-log but not in the decided list.
For these minitransactions, it is necessary to contact the set D of
memory nodes that participated in the minitransaction to know their
votes. This set D is stored in the participant’s redo-log. Upon being
contacted by this procedure, if a memory node has not voted, then
it votes no (by placing the minitransaction’s tid in the forced-abort
list). This is necessary for correctness when the minitransaction’s
original coordinator is still running.

4.6 Recovery from crash of the whole system
When many memory nodes or the whole system crashes and

restarts, the management node starts a procedure to recover many or
all memory nodes at once. Each memory node essentially uses the
previously described scheme to recover from its own crash, but em-
ploys a simple optimization: memory nodes send each other their
votes on recent minitransactions, so that if a memory node has a re-
cent minitransaction in its redo-log but not in its decided list, it does
not have to contact other memory nodes to determine its outcome.

How does the management node know that many nodes crashed
and restarted? We use a simple scheme: when a memory node
reboots, it sends a reboot notification to the management node.
The management node tries to contact other memory nodes and
waits until it gets an alive response or a reboot notification from a
large fraction of memory nodes. The latter case indicates that many
nodes crashed and restarted.

4.7 Log garbage collection
A memory node applies committed minitransactions to the disk

image, so that the redo-log can be garbage collected. The redo-log
is garbage collected in log order. If the log head has an aborted
minitransaction, then it can be garbage collected immediately, be-
cause this minitransaction can never commit. The hard case is
garbage collecting committed minitransactions. This is done ac-
cording to the following rule:

A committed minitransaction tid can be removed from the
redo-log head only when tid has been applied to the disk
image of every memory node involved in tid .

The reason for having “every” above is that, if some memory
node q crashes and recovers, then q may need to see tid at the
redo-log of other memory nodes to determine that tid committed.
To implement the above rule, a memory node p periodically in-
forms every other memory node q of the minitransactions tids that
p recently applied to its disk image and that q participated in.

Besides the redo-log, the other data structures in Figure 5 are
garbage collected as follows. The all-log-tids list, in-doubt list,
and decided list are garbage collected with the redo-log: whenever
a tid is removed from the redo-log, it is also removed from these
other lists.

The forced-abort list, however, cannot be garbage collected in
this way, otherwise it might corrupt the system (this may happen
if a minitransaction’s original coordinator is still running after the
minitransaction has been garbage collected). To garbage collect
forced-abort, we rely on an epoch number, which is a system-wide
counter that increases monotonically very slowly (once per hour).

The current epoch is kept by each memory node (participants) us-
ing loosely synchronized clocks, and coordinators learn it by hav-
ing participants piggyback the latest epoch onto their messages.
A minitransaction is assigned an epoch by its coordinator, which
is frequently the current epoch, but sometimes may lag behind.
A participant votes to abort any minitransactions whose epoch is
stale, meaning two or more epochs behind the current one. This
allows participants to garbage collect any tids in forced-abort with
a stale epoch, since such minitransactions will always get an abort
vote. Epochs may abort otherwise successful minitransactions that
either execute for more than 1 hour or that originate from a coor-
dinator with a stale epoch. The former is unlikely to happen, since
minitransactions are short lived. The latter could happen if the co-
ordinator has executed no minitransactions for hours; in this case,
the coordinator can simply retry its aborted minitransaction.

4.8 Further optimizations
If a minitransaction has just one participant, it can be executed

in one phase because its outcome depends only on that participant.
This creates further incentives for having node locality. For in-
stance, SinfoniaFS tries to maintain a file’s content and its inode
in the same memory node (if space allows), to take advantage of
one-phase minitransactions when manipulating this file.

Another optimization is for read-only minitransactions, that is,
minitransactions without write items, which do not modify any
data. For these, it is not necessary for memory nodes to store
the minitransaction in the redo-log, because these minitransactions
have no data to recover on failures.

4.9 Consistent backups
Sinfonia can perform transactionally-consistent backups of its

data. To do so, each memory node takes note of the last committed
minitransaction L in its redo-log, and updates the disk image up to
minitransaction L. Meanwhile, new minitransactions are temporar-
ily prevented from updating the disk image; this does not require
pausing them, since they can execute by updating just the redo-
log3. Once the disk image reflects minitransactions up to L, the
disk image is copied or snapshotted, if the local file system or stor-
age device supports snapshots. Then, updates to the disk image are
resumed, while the backup is made from the copy or snapshot.

To ensure transactional consistency, we must start the above pro-
cedure “simultaneously” at all memory nodes, at a time when there
are no outstanding minitransactions. To do so, we use a two-phase
protocol: phase 1 locks all addresses of all nodes, and phase 2 starts
the above procedure and releases all locks immediately (as soon as
L is noted and subsequent minitransactions are prevented from up-
dating the disk image). Recall that the two-phase protocol for mini-
transactions avoids deadlocks by acquiring locks without blocking:
if some lock cannot be acquired, the coordinator releases all locks
and retries after a while. This is reasonable for minitransactions
that touch a small number of memory nodes. But a backup involves
all memory nodes, so this scheme leads to starvation in a large sys-
tem. Therefore, the two-phase protocol for creating backup images
uses blocking lock requests instead, and does so in memory node
order to avoid a deadlock with another backup request.

4.10 Replication
If desired, Sinfonia can replicate memory nodes for availability

using standard techniques. We integrate primary-copy replication
into the two-phase minitransaction protocol, so that the replica is

3This description is for all Sinfonia modes except RAM and RAM-REPL.
These modes requires flushing RAM to disk to create a backup; while this
happens, the redo-log (which is normally disabled in these modes) is en-
abled to buffer updates.

updated while the primary writes its redo-log to stable storage in
the first phase of commit. When the replica receives an update
from the primary, it writes it in its redo-log and then acknowledges
the primary.

Primary-copy replication is very simple, but it has a shortcom-
ing: it relies on synchrony to fail over the primary to the replica.
Used in an asynchronous system, primary-copy replication can lead
to false fail-overs, where both primary and replica become active
and the system loses consistency. We mitigate false fail-overs by
using lights-out management—a feature available in typical data
centers, which allows remote software to power on and off a ma-
chine regardless of its CPU state. Thus, Sinfonia powers down the
primary when it fails over to the replica. Sinfonia could also have
used an alternative solution to the false-fail-over problem: repli-
cate memory nodes using state machines and Paxos [19] instead of
primary-copy.

4.11 Configuration
Applications refer to memory nodes using a logical memory id,

which is a small integer. In contrast, the physical memory id con-
sists of a network address (IP address) concatenated with an ap-
plication id. The map of logical to physical memory ids is kept
at the Sinfonia directory server; this map is read and cached by
application nodes when they initialize. This server has a fixed net-
work name (DNS name) and can be replicated for availability. The
logical to physical memory id mapping is static, except that new
memory nodes can be added to it. When this happens, the applica-
tion must explicitly recontact the Sinfonia directory server to obtain
the extended mapping.

5. APPLICATION: CLUSTER FILE SYSTEM
We used Sinfonia to build a cluster file system called SinfoniaFS,

in which a set of cluster nodes share the same files. SinfoniaFS is
scalable and fault tolerant: performance can increase by adding
more machines, and the file system continues to be available de-
spite the crash of a few nodes in the system; even if all nodes crash,
data is never lost or left inconsistent. SinfoniaFS exports NFS v2,
and cluster nodes mount their own NFS server locally. All NFS
servers export the same file system.

Cluster nodes are application nodes of Sinfonia. They use Sin-
fonia to store file system metadata and data, which include inodes,
the free-block map, chaining information with a list of data blocks
for inodes, and the contents of files. We use Sinfonia in modes
LOG or LOG-REPL, which use a disk image to keep the contents of
a memory node, so these data structures are stored on disk and are
limited by disk size.

Sinfonia simplified the design of the cluster file system in four
ways. First, nodes in the cluster need not coordinate and orches-
trate updates; in fact, they need not be aware of each other’s ex-
istence. Second, cluster nodes need not keep journals to recover
from crashes in the middle of updates. Third, cluster nodes need
not maintain the status of caches at remote nodes, which often re-
quires complex protocols that are difficult to scale. And fourth, the
implementation can leverage Sinfonia’s write ahead log for perfor-
mance without having to implement it again.

5.1 Data layout
Data layout (Figure 6) is similar to that of a local file system

on a disk, except that SinfoniaFS is laid out over many Sinfonia
memory nodes. The superblock has static information about the
entire volume, like volume name, number of data blocks, and num-
ber of inodes. Inodes keep the attributes of files such as type, ac-
cess mode, owner, and timestamps. Inode numbers are pairs with a
memory node id and a local offset, which allows a directory to point

inode area

data block
area

superblock area

free block
bitmap area

memory
node 1

...

unusedunusedunused

memory
node 2

memory
node n

Figure 6: Data layout for SinfoniaFS. These data structures are on
disk, as Sinfonia runs in mode LOG or LOG-REPL.

1 setattr(ino_t inodeNumber, sattr_t newAttributes){

2 do {

3 inode = get(inodeNumber); // get inode from inode cache

4 newiversion = inode >iversion+1;

5 t = new Minitransaction;

6 t >cmp(MEMNODE(inode), ADDR_IVERSION(inode),

LEN_IVERSION, &inode >iversion); // check inode iversion

7 t >write(MEMNODE(inode), ADDR_INODE(inode),

LEN_INODE, &newAttributes); // update attributes

8 t >write(MEMNODE(inode), ADDR_IVERSION(inode),

LEN_IVERSION, &newiversion); // bump iversion

9 status = t >exec_and_commit();

10 if (status == fail) ... // reload inodeNumber into cache

11 } while (status == fail); }

–

–

–

–

–

–

Figure 7: The box shows code to create and commit a minitransac-
tion to change an inode’s attributes in SinfoniaFS. Lines 6–8 pop-
ulate the minitransaction and line 9 executes and commits it.

to inodes at any memory node. Data blocks of 16 KB each keep the
contents of files. Data block numbers are pairs with a memory node
id and an offset local to the memory node. The free-block bitmap
indicates which data blocks are in use. Chaining-list blocks indi-
cate which blocks comprise a file; they are stored in data blocks,
and have pointers to the next block in the list. Note that a 4 GB file
requires only 65 chaining-list blocks (each chaining block can hold
4095 block numbers), so we did not implement indirect blocks, but
they could be implemented easily. Directories and symbolic links
have their contents stored like regular files, in data blocks.

5.2 Making modifications and caching
Cluster nodes use minitransactions to modify file system struc-

tures, like inodes and directories, while preserving their integrity.
Memory nodes store the “truth” about the file system: the most
recent version of data.

Cluster nodes can cache arbitrary amounts of data or metadata,
including inodes, the free-block bitmap, and the content of files
and directories. Because cache entries get stale, they are validated
against data in memory nodes before being used. Validation oc-
curs by adding compare items to a minitransaction, to check that
the cached version matches what is in Sinfonia. For example, Fig-
ure 7 shows the implementation of NFS’s setattr, which changes
attributes of an inode. The compare item in line 6 ensures that
the minitransaction only commits if the cached version matches
what is in Sinfonia. If the minitransaction aborts due to a mis-
match, the cache is refreshed and the minitransaction is retried. For
a read-only file system operation, such as getattr (stat), cache en-
tries are validated with a minitransaction with just compare items:
if the minitransaction commits then the cache entries checked by
the compare items are up-to-date.

1. if local cache is empty then load it
2. make modifications in local cache
3. issue a minitransaction that checks the validity of local cache

using compare items, and updates information using write items
4. if minitransaction fails, check the reason and, if appropriate,

reload cache entries and retry, or return an error indicator.

Figure 8: One minitransaction does it all: the above template
shows how SinfoniaFS implements any NFS function with 1 mini-
transaction.

1. if file’s inode is not cached then load inode and chaining list
2. find a free block in the cached free-block bitmap
3. issue a minitransaction that checks iversion of

the cached inode, checks the free status of the new block, updates the
inode’s iversion, appends the new block to the inode’s chaining list,
updates the free-block bitmap, and populates the new block

4. if minitransaction failed because the inode version does not match
then reload inode cache entry and retry

5. if minitransaction failed because block is not free then reload
free-block bitmap and retry

6. if minitransaction failed for another reason then retry it
7. else return success

Figure 9: Implementing write that appends to a file, allocating a
new block.

File read operations and file system operations that modify data
always validate cache entries against memory nodes. Thus, if a
cluster node writes to a file, this write will be visible immediately
by all cluster nodes: if another cluster node reads the file, its read
will perform a validation of cached data, which will fail, causing it
to fetch the new contents from the memory nodes. For efficiency,
readdir, lookup, or stat (getattr) may use cached inode attributes
updated recently (within 2s) without validating them. So, these
operations (but not file read) may return slightly stale results, as
with NFS-mounted file systems.

In SinfoniaFS we implemented every NFS function with a single
minitransaction. Figure 8 shows the general template to do this,
and Figure 9 shows a specific example.

5.3 Node locality
An inode, its chaining list, and its file contents could be stored

in different memory nodes, but SinfoniaFS tries to colocate them if
space allows. This allows minitransactions to involve fewer mem-
ory nodes for better scalability.

5.4 Contention and load balancing
SinfoniaFS uses Sinfonia load information to decide where to

write new data (load-based file migration is also possible but has
not been implemented). We currently use the follow simple proba-
bilistic scheme. Each cluster node keeps a preferred memory node,
where new data is written. From time to time, the cluster node
checks if its preferred memory node has too much load from other
cluster nodes. If so, with a small change probability, the cluster
node changes its preferred memory node to the memory node with
least load. The small change probability avoids many simultaneous
changes that might cause load oscillations.

Within a memory node, if a cluster node tries to allocate an inode
or block and the minitransaction fails (because another cluster node
allocates it first), the cluster node chooses a new inode or block at
random to try to allocate again.

memory
node 1

4 12

3

memory
node 2

memory
node 3

qu
eu

e
of

m
em

be
r

1
qu

eu
e

of
m

em
be

r
4

qu
eu

e
of

m
em

be
r

2

qu
eu

e
of

m
em

be
r

3

?

?

?

Figure 10: Basic design of SinfoniaGCS. Gray messages were suc-
cessfully broadcast: they are threaded into the global list. Cross-
hatched messages are waiting to be threaded into the global list,
but they are threaded locally.

6. APPLICATION: GROUP COMMUNICATION
Intuitively, a group communication service [2, 8] is a chat room

for distributed applications: processes can join and leave the room
(called a group) and broadcast messages to it. Processes in the
room (members) receive messages broadcast by members and view
change messages indicating members have joined or left. The ser-
vice ensures that all members receive the same messages and in the
same order, for consistency. The current set of members is called
the latest view.

Implementations of group communication rely on complicated
protocols to ensure total ordering of messages and tolerate failures
(see [10] for a survey). For example, in one scheme, a token rotates
among members and a member only broadcasts if it has the to-
ken. Since no two members broadcast simultaneously, this scheme
ensures a total order. The complexity, in this case, comes from han-
dling crashes of a member who has the token and maintaining the
ring to circulate tokens.

6.1 Basic design
To implement a group communication service, we store mes-

sages in Sinfonia and use minitransactions to order them. The sim-
plest design, which performs poorly, uses a circular queue of mes-
sages stored in Sinfonia. To broadcast a message, a member finds
the tail of the queue and adds the message to it using a minitransac-
tion. The minitransaction may fail if a second member broadcasts
concurrently and manages to execute its minitransaction before the
first member. In this case, the first member has to retry by finding
the new tail and trying to add its message at that location. This
design performs poorly when many members broadcast simultane-
ously, because each time they retry they must resend their message
to Sinfonia, which consumes bandwidth.

To solve this problem, we extend the above design as shown in
Figure 10. Each member has a dedicated circular queue, stored on
one memory node, where it can place its own broadcast messages
without contention. Messages of all queues are “threaded” together
with “next” pointers to create a single global list. Thus, to broadcast
a message m, a member adds m to its queue, finds the end of the
global list—the global tail—and updates the global tail to point to
m, thus threading m into the global list. Only this last step (update
pointer) requires a minitransaction. If unsuccessful, the member
must retry, but it does not have to transfer m again to Sinfonia.
This design is more efficient than the previous one because (1) it
reduces the duration that the global tail location is accessed, thereby
reducing contention on it, and (2) a member that broadcasts at a
high rate can place multiple messages on its dedicated queue while
the global tail is under contention.

Each member keeps a tail pointer indicating the latest message
it received; this pointer does not have to be in Sinfonia. To receive
new messages, a member just follows the “next” pointers in the
global list, starting from the message indicated by its tail pointer.

View change messages are broadcast like any other messages
by the member that requests the view change. We also maintain
some group metadata in Sinfonia: the latest view and the location
of each member’s queue. To join, a member acquires a global lease
on the metadata using a compare-and-swap minitransaction. Then,
the member updates the latest view, finds the global tail, broadcasts
a view change message, and releases the global lease. To leave, a
member uses an analogous procedure.

For separation of concerns, our service does not automatically
remove members that crash [28]. Rather, a member can use a sepa-
rate failure detection service [5] to detect crashes and then execute
a leave operation for a crashed member.

6.2 Garbage collection
If the queue of a member fills up, it must free entries that are

no longer needed: those with messages that every member in the
latest view has already received. For this purpose, we keep (in
Sinfonia) an approximation of the last message that each member
received from each queue. Each member periodically updates this
last-received pointer (using a minitransaction) if it has changed.
When a queue becomes full, a member that wants to broadcast frees
unneeded messages in its queue.

6.3 Optimizations
Finding the global tail. We do not keep a pointer to the global

tail, because it is too expensive to maintain. Instead, each mem-
ber p reports the last message that p threaded (i.e., added to the
global list). This information is placed (with a minitransaction)
in a location lastThreadedp in Sinfonia. Moreover, when a mes-
sage is threaded, it receives a monotonic global sequence number
(GSN). Thus, members can efficiently find the global tail by read-
ing lastThreadedp for each member p and picking the message with
highest GSN. Another optimization is for members that only want
to broadcast (without receiving messages): they periodically set
their last received pointers to lastThreadedp for each member p.

Coalesced threading. Members broadcast messages asynchro-
nously, that is, without receiving confirmation until later. If a mem-
ber is broadcasting at a high rate, it delays the threading of mes-
sages into the global tail. Thus, a member’s queue can have many
messages waiting to be threaded. For efficiency, these are threaded
together within the queue (cross-hatched messages in Figure 10),
so that the member only needs to thread the first message into the
global list, and then set the GSN of its latest unthreaded message.
When this happens, the member receives (delayed) confirmation
that its messages were broadcast.

Small messages. If a member broadcasts many small messages,
we combine many of them into larger messages before placing
them into the queue.

7. EVALUATION
We evaluated Sinfonia and the applications we built with it. Our

testing infrastructure has 247 machines on 7 racks connected by
Gigabit Ethernet switches. Intra-rack bisection bandwidth is ≈14
Gbps, while inter-rack bisection bandwidth is ≈6.5 Gbps. Each
machine has two 2.8GHz Intel Xeon CPUs, 4GB of main memory,
and two 10000rpm SCSI disks with 36GB each. Machines run Red
Hat Enterprise Linux WS 4 with kernel version 2.6.9.

Our machines do not have NVRAM, so for Sinfonia modes that
use NVRAM, we used RAM instead. This is reasonable since one
type of NVRAM is battery-backed RAM, which performs identi-

Keys are addresses aligned at 4-byte boundaries, and each value is 4
bytes long, corresponding to one minitransaction item. We used the
B-tree access method, synchronous logging to disk, group commit,
and a cache that holds the whole address space. We ran Berkeley
DB on a single host, so to use it in a distributed system, we built a
multithreaded RPC server that waits for a populated minitransaction
from a remote client, and then executes it locally within Berkeley
DB. We also tried using Berkeley DB’s RPC interface, but it per-
formed much worse because it incurs a network round-trip for each
item in a minitransaction, rather than a round-trip for the entire mini-
transaction.

Figure 11: Berkeley DB setup for all experiments.

cally to RAM. In all figures and tables, error bars and ± variations
refer to 95% confidence intervals.

7.1 Sinfonia service
We evaluated the base performance of Sinfonia, the benefit of

various minitransaction optimizations, the scalability of minitrans-
actions, and their behavior under contention. Each experiment con-
sidered several Sinfonia modes of operation as described in Fig-
ure 3. When replication was used, we colocated the primary of
a memory node with the replica of another memory node using
chained declustering [18].

7.1.1 Result: base performance

We first tested base performance of a small system with 1 mem-
ory node and 1 application node. We considered minitransactions
with 4-byte items with word-aligned addresses. We compared Sin-
fonia against Berkeley DB 4.5, a commercial open-source devel-
oper database library, configured as explained in Figure 11. Fig-
ure 12 shows throughput and latency for a workload that repeatedly
issues minitransactions, each with six items4 chosen randomly over
a range of 50 000 items. We varied the number of outstanding mini-
transactions at the application node (# of threads) from 1 to 256. In
lines labeled Sinfonia-mode, mode refers to one of Sinfonia’s modes
of operation in Figure 3. Modes LOG and LOG-REPL log minitrans-
actions synchronously to disk, so these modes are more appropriate
to compare against Berkeley DB, which also logs to disk.

As can be seen, the various Sinfonia modes have good perfor-
mance and can reasonably trade off fault tolerance for performance.
Both Sinfonia-NVRAM and Sinfonia-NVRAM-REPL can execute over
7500 minitrans/s with a latency of ≈3ms while Sinfonia-LOG and
Sinfonia-LOG-REPL can execute 2400 and 2000 minitrans/s with
a latency of 13ms and 16ms, respectively. All Sinfonia modes
peak at around 6500-7500 minitrans/s, because the bottleneck was
the CPU at the application node, which operates identically in all
modes.5 With a few threads, Berkeley DB has similar performance
to Sinfonia-LOG and Sinfonia-LOG-REPL, as the system is limited by
synchronous writes to disk. With a larger number of threads, Berke-
ley DB’s performance peaks below Sinfonia. We believe this is be-
cause of contention in Berkeley DB’s B-tree: it uses a page-level
lock-coupling technique which locks a leaf page for every modifi-
cation, blocking other transactions that access different locations in
the same page.

4Six is the median number of items in a minitransaction of SinfoniaFS
while running the Andrew benchmark.
5With Sinfonia-LOG and Sinfonia-LOG-REPL, if the primary memory node
were colocated with the replica of another node, the bottleneck would be
the memory node. We did not do that here as there is only 1 memory node.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 1 10 100 1000

m
in

itr
an

s/
s

(x
10

00
)

threads

Sinfonia-NVRAM
Sinfonia-NVRAM-REPL
Sinfonia-LOG
Sinfonia-LOG-REPL
Berkeley DB

 0
 20
 40
 60
 80

 100

 1 10 100 1000

la
te

nc
y

(m
s)

threads

Berkeley DB
Sinfonia-LOG-REPL
Sinfonia-LOG
Sinfonia-NVRAM-REPL
Sinfonia-NVRAM

Figure 12: Performance of Sinfonia with 1 memory node.

7.1.2 Result: optimization breakdown

We measured the benefit of the various minitransaction optimiza-
tions in Sinfonia. We considered 4 systems with different levels of
optimization:

• System 1: Non-batched items. When an application node
adds an item to the minitransaction, the system immediately
reads or writes the item (depending on its type) and locks
its location at the proper memory node. Application nodes
see the results of reads as the transaction executes, providing
more flexibility than Sinfonia minitransactions do. At the
end of the transaction, the system executes two-phase com-
mit. This is the traditional way to execute transactions.

• System 2: Batched items. The system batches all minitrans-
action items at the application node. At the end of the trans-
action, the system reads or writes all items together, and then
executes two-phase commit.

• System 3: 2PC combined. The system batches minitransac-
tion items and accesses them in the first phase of two-phase
commit. This saves an extra network round-trip compared to
System 2, and it is how Sinfonia executes minitransactions
involving many memory nodes.

• System 4: 1PC combined. The minitransaction executes
within the first phase of one-phase commit. This saves an-
other network round-trip compared to System 3, and it is
how Sinfonia executes minitransactions involving one mem-
ory node.

We considered separately read-write and read-only minitrans-
actions, with small (6) and large (50) numbers of minitransac-
tion items. Read-write minitransactions consisted of compare-and-
swaps, and read-only minitransactions consisted of compares only.
Compare-and-swaps were set up to always succeed (by always
swapping the same value). Items had 4 bytes and were chosen ran-
domly from a set of 50 000 items. There were 4 memory nodes and
4 application nodes. Each application node had 32 threads issuing
minitransactions as fast as possible. The Sinfonia mode was LOG
(the other modes had similar results, except that in modes that do
not log to disk, read-write and read-only minitransactions behaved
similarly). In all systems, items were cached in RAM at mem-
ory nodes, and disk writes were synced only when committing the
minitransaction.

6 item R/W 50 item R/W 6 item R/O 50 item R/O

10

20

30

m
in

itr
an

s/
s

(x
10

00
)

Non-batched items
Batched items
2PC combined
1PC combined

Figure 13: Performance with various combinations of techniques.

Figure 13 shows the aggregate throughput of each system (error
bars are too small to see). As can be seen, all optimizations produce
significant benefits. With 6 item read-only minitransactions, batch-
ing items improves throughput by 2.2x and combining execution
with 2PC produces another 1.3x improvement. Large minitransac-
tions benefit more, as expected. Read-only minitransactions benefit
more than read-write minitransactions, since the latter are domi-
nated by disk writes. Even so, for 6 item read-write minitransac-
tions, the workload that benefits least, 2PC-combined is 44% faster
than the non-batched system. For minitransactions involving just
one memory node, running 1PC improves throughput over 2PC by
1.3x–1.6x, depending on the workload.

7.1.3 Result: scalability
We evaluated the scalability of Sinfonia by measuring its per-

formance as we increased the system size and the workload to-
gether. In this experiment, there were up to 246 machines: half
memory nodes and half application nodes. Each application node
had 32 threads issuing minitransactions as fast as possible. Mini-
transactions had 6 items arranged as 3 compare-and-swaps chosen
randomly, with the restriction that minitransaction spread be 2 (ex-
cept when there is only 1 memory node). Minitransaction spread is
the number of memory nodes that a minitransaction touches. Each
memory node stored 1 000 000 items. Minitransaction optimiza-
tions were enabled, that is, minitransactions executed in the commit
protocol.

The first graph in Figure 14 shows aggregate throughput as sys-
tem size increases (the smallest size is 2, with 1 memory node and
1 application node). The table shows the exact numeric data in the
graph. As can be seen, performance increases monotonically as we
increase the system size, except from size 2 to 4. This is because
the system of size 2 has 1 memory node, so minitransactions use
1PC, while with larger system sizes, minitransactions involve many
memory nodes, which requires using the slower 2PC. We call this
the cost of distributing the system. We also included a line for a
Berkeley DB configuration (see Figure 11) to see if a single-server
system outperforms small distributed systems, which sometimes
happens in practice. This did not happen with Sinfonia.

We also quantify the scalability efficiency at different system
sizes, by showing how well throughput increases compared to a
linear increase from a base size. More precisely, we define scala-
bility efficiency as

target_throughput
base_throughput

÷ target_size
base_size

where target_size>base_size. This metric is relative to a chosen
base size. An efficiency of 0.9 as the system size doubles from 4
to 8 means that the larger system’s throughput is a factor of 0.9
from doubling, a 10% loss. The second graph in Figure 14 shows
scalability efficiency for each Sinfonia mode, comparing it with a
perfectly scalable system, whose efficiency is always 1. As can
be seen, except when the size increases from 2 to 4, efficiency is
reasonable for all modes at all sizes: most have efficiency 0.9 or
higher, and the lowest is 0.85.

system size
system 2 4 8 16 32 64 128 246

Sinfonia-NVRAM 7.5 11 19 37 73 141 255 508
Sinfonia-NVRAM-REPL 7.9 5.9 11 23 44 74 130 231

Sinfonia-LOG 2.4 2.3 5.1 10 21 37 73 159
Sinfonia-LOG-REPL 1.9 1.3 2.1 5 11 21 41 71

Table shows thousands of minitrans/s

 0.1

 1

 10

 100

 1000

 1 10 100 1000

m
in

itr
an

s/
s

(x
10

00
)

system size

Sinfonia-NVRAM
Sinfonia-NVRAM-REPL
Sinfonia-LOG
Sinfonia-LOG-REPL
Single-node Berkeley DB

PERFECTLY SCALABLE SYSTEM

2�4 4�8 8�16 16�32 32�64 64�128 128�246
change in system size

0

0.5

1

sc
al

ab
ili

ty
ef

fic
ie

nc
y

Sinfonia-NVRAM
Sinfonia-NVRAM-REPL
Sinfonia-LOG
Sinfonia-LOG-REPL

Figure 14: Sinfonia scalability.

 0
 1
 2
 3

 0 5 10 15 20 25 30 35

m
in

itr
an

s/
s

(x
10

00
)

system size

Sinfonia-LOG
Sinfonia-LOG-REPL

Figure 15: Effect of minitransaction spread on scalability.

In our next experiment, as we increased the system size, we
also increased minitransaction spread, so that each minitransac-
tion involved every memory node. Minitransactions consisted of
16 compare-and-swaps, so that we could increase spread up to 16.
Figure 15 shows the result for Sinfonia modes LOG and LOG-REPL
(other modes are similar). Note that the axes have a linear scale,
which is different from Figure 14.

As can be seen, there is no scalability now. We did not know this
initially, but in retrospect the explanation is simple: a minitransac-
tion incurs a high initial cost at a memory node but much smaller
incremental cost (with number of items), and so spreading it over
many nodes reduces overall system efficiency. Thus, to achieve op-
timal scalability, we obey the following simple rule: Across mini-
transactions, spread load; within a minitransaction, focus load. In
other words, one should strive for each minitransaction to involve a
small number of memory nodes, and for different minitransactions
to involve different nodes.

Finally, we ran experiments where we increased the number of
application nodes without increasing the number of memory nodes,
and vice-versa. The results were not surprising: in the first case,
throughput eventually levels off as Sinfonia saturates, and in the
second case, system utilization drops since there is not enough of-
fered load.

7.1.4 Result: contention
In our next experiment, we varied the probability that two

minitransactions overlap, causing contention, to see its effect on

 1

 10

 100

 1000

 10000

 0.001 0.01 0.1

m
in

itr
an

s/
s

collision probability

Sinfonia-LOG cas
Sinfonia-LOG-REPL cas
Berkeley DB cas
Berkeley DB inc
Sinfonia-LOG inc
Sinfonia-LOG-REPL inc

Figure 16: Effect of minitransaction overlap on performance.

throughput. Minitransactions consisted of 8 compare-and-swaps
that were set up to always succeed (by always swapping the same
value), so that we can measure the efficiency of our commit pro-
tocol in isolation. Sinfonia had 4 memory nodes and minitrans-
action spread was 2. There were 4 application nodes each with
16 outstanding minitransactions at a time. All items were selected
randomly from some set whose size determined the probability of
pairwise overlap. For instance, with 1024 items to choose from, the
probability that two minitransactions overlap on at least one item is
1−`

1024−8
8

´
/

`
1024

8

´ ≈ 0.06. Figure 16 shows the result on the top
three lines labeled “cas” (compare-and-swap).

As can be seen, Sinfonia provides much better throughput than
Berkeley DB, even with high contention. We believe this is because
of contention in Berkeley DB’s B-tree. We also measured latency,
and the results are qualitatively similar.

In another experiment, we used Sinfonia to perform an opera-
tion not directly supported by minitransactions: increment values
atomically. We did so by having a local cached copy of the values
at the application node, and using a minitransaction to validate the
cache and write the new value. Here, a minitransaction could fail
because a compare fails. In this case, the application refreshed its
cache and retried the minitransaction. In essence, this amounted to
using minitransactions to implement optimistic concurrency con-
trol. The results are shown in Figure 16 by the lines labeled “inc”
(increment).

Berkeley DB performs as with the compare-and-swap experi-
ment because both experiments incur the same locking overhead.
But Sinfonia performs much worse, because Sinfonia has to retry
multiple times as contention increases. We conclude that, for op-
erations not directly supported by minitransactions, Sinfonia does
not perform well under high contention. We could have extended
minitransactions to have “increment items” besides the read, write
and compare items, as explained in Section 3.3. Had we done so,
we could execute increments much more efficiently, but this was
not required by our applications.

7.1.5 Result: ease of use
We evaluated Sinfonia’s ease of use by building two applications

with it, SinfoniaFS and SinfoniaGCS. Figure 17 shows typical de-
velopment effort metrics used in software engineering. In LOC
(lines of code), “glue” refers to the RPC interface in SinfoniaFS
and LinuxNFS, and “core” is the rest. LinuxNFS is the NFS server
in Linux. SinfoniaFS compares well with LinuxNFS even though
LinuxNFS is a centralized client-server system while SinfoniaFS is
distributed. SinfoniaGCS fares much better than Spread on these
metrics. While SinfoniaGCS is only a prototype and Spread is
open-source software (and hence, more mature code), a difference
of an order of magnitude in lines of code is considerable.

We also report qualitatively on our experience in building Sin-
foniaFS and SinfoniaGCS, including advantages and drawbacks.

SinfoniaFS LinuxNFS SinfoniaGCS Spread

LOC (core) 2831 5400
LOC (glue) 1024 500
LOC (total) 3855 5900 3492 22148
(language) C++ C C++ C

Develop time 1 month unknown 2 months years
Major versions 1 2 1 4
Code maturity prototype open source prototype open source

Figure 17: Comparison of development effort.

Phase Description
1 create 605 files in 363 directories 5 levels deep
2 remove 605 files in 363 directories 5 levels deep
3 do a stat on the working directory 250 times
4 create 100 files, and changes permissions and stats

each file 50 times
4a create 10 files, and stats each file 50 times
5a write a 1MB file in 8KB buffers 10 times
5b read the 1MB file in 8KB buffers 10 times
6 create 200 files in a directory, and read the directory

200 times; each time a file is removed
7a create 100 files, and then rename and stat

each file 10 times
7b create 100 files, and link and stat each file 10 times
8 create 100 symlinks, read and remove them 20 times
9 do a statfs 1500 times

Figure 18: Connectathon NFS Testsuite modified for 10x work.

We found that the main advantages of using Sinfonia were that (1)
transactions relieved us from issues of concurrency and failures,
(2) we did not have to develop any distributed protocols and worry
about timeouts, (3) application nodes did not have to keep track
of each other, (4) the correctness of the implementation could be
verified by checking that minitransactions maintained invariants of
shared data structures, (5) the minitransaction log helped us debug
the system by providing a detailed history of modifications; a sim-
ple Sinfonia debugging mode adds short programmer comments
and current time to logged minitransactions.

The main drawback of using Sinfonia is that its address space
is a low-level abstraction with which to program. Thus, we had
to explicitly lay out the data structures onto the address space and
base minitransactions on this layout. With SinfoniaFS, this was not
much of a problem, because the file system structures led to a nat-
ural data layout. With SinfoniaGCS, we had to find a layout that is
efficient in the presence of contention—an algorithmic problem of
designing a concurrent shared data structure. This was still easier
than developing fault-tolerant distributed protocols for group com-
munication (a notoriously hard problem).

7.2 Cluster file system
We now consider the performance and scalability of SinfoniaFS.

7.2.1 Result: base performance
We first evaluated the performance of SinfoniaFS at a small

scale, to ensure that we are scaling a reasonable system. We used
1 memory node and 1 cluster node running SinfoniaFS; a cluster
node corresponds to an application node of Sinfonia. We compare
against NFS with 1 client and 1 server.

We first ran SinfoniaFS with the Connectathon NFS Testsuite,
which is mostly a metadata intensive microbenchmark with many
phases, each of which exercises one or two file system functions.
We modified some phases to increase the work by a factor of 10,
shown in Figure 18, because otherwise they execute too quickly.

Figure 19 shows the benchmark results for SinfoniaFS compared
to a Linux Fedora Core 3 NFS server, where smaller numbers are

Phase Linux NFS (s) SinfoniaFS- SinfoniaFS-
LOG (s) LOG-REPL(s)

1 19.76 ± 0.59 5.88 ± 0.04 6.05 ± 0.15
2 14.96 ± 0.99 6.13 ± 0.15 6.44 ± 0.43
3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
4 123.4 ± 0.44 60.87 ± 0.08 61.44 ± 0.15
4a 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
5a 9.53 ± 0.27 8.27 ± 0.14 8.44 ± 0.06
5b 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
6 2.65 ± 0.09 2.68 ± 0.04 2.77 ± 0.04
7a 37.49 ± 0.21 12.25 ± 0.14 12.32 ± 0.10
7b 25.30 ± 0.21 12.47 ± 0.24 12.21 ± 0.05
8 50.90 ± 0.25 24.71 ± 0.08 25.27 ± 0.26
9 0.19 ± 0.00 0.71 ± 0.02 0.71 ± 0.02

Figure 19: Results of modified Connectathon NFS Testsuite.

better as they indicate a shorter running time. We used the NFSv2
protocol in both cases, and the underlying file system for the NFS
server is ext3 using ordered journaling mode. Sinfonia was set to
LOG or LOG-REPL mode, which logs to disk, and the NFS server
was set to synchronous mode to provide data durability. As can
be seen, except in phase 9, SinfoniaFS performs at least as well,
and typically 2-3 times better than, Linux NFS. The main reason
is that SinfoniaFS profits from the sequential write-ahead logging
provided by Sinfonia, which is especially beneficial because Con-
nectathon has many operations that modify metadata. Note that
phases 3, 4a, and 5b executed mostly in cache, so these results
are not significant. In phase 9, SinfoniaFS returns cached val-
ues to statfs, so the latency is equal to the communication over-
head between the NFS client and server. LinuxNFS performs bet-
ter because it is implemented in the kernel. Finally, in all phases,
SinfoniaFS-LOG-REPL performs only slightly worse than SinfoniaFS-
LOG because the experiments do not exhaust bandwidth, and some
of the latency of replication is hidden by Sinfonia (see Section 3).

Next, we ran a macro benchmark with a more balanced mix of
data and metadata operations. We modified the Andrew benchmark
to use as input the Tcl 8.4.7 source code, which has 20 directories
and 402 regular files with a total size of 16MB (otherwise Andrew
runs too quickly). The benchmark has 5 phases: (1) duplicate the
20 directories 50 times, (2) copy all data files from one place to
one of the duplicated directories, (3) recursively list the populated
duplicated directories, (4) scan each copied file twice, and (5) do a
“make”.

Figure 20 shows the results, again comparing SinfoniaFS with
Linux NFS. As can be seen, in almost all phases, SinfoniaFS per-
forms comparably to or better than the NFS server. In phase 1 it
performs far better because the phase is metadata intensive, similar
to the Connectathon benchmark. In phase 4, SinfoniaFS performs
worse, as lots of data is read and both Sinfonia and SinfoniaFS run
in user space without buffer-copying optimizations. Sinfonia mem-
ory nodes incur several copies (disk to user memory, and vice versa
when sending the data to SinfoniaFS) and SinfoniaFS incurs further
copies receiving data (kernel to user), and sending it the NFS client
(user to kernel). A better implementation would have both Sinfonia
and SinfoniaFS in the kernel to avoid copying buffers, and would
use VFS as the interface to SinfoniaFS instead of NFS. In phase
5, SinfoniaFS performs slightly better as the benefits of the write-
ahead logging outweigh the copying overheads.

7.2.2 Result: scalability
We ran scalability tests by growing the system size and work-

load together. We started with 1 memory node and 1 cluster node

Phase Linux NFS (s) SinfoniaFS- SinfoniaFS-
-LOG (s) LOG-REPL (s)

1 (mkdir) 26.4 ± 1.6 6.9 ± 0.2 8.8 ± 0.7
2 (cp) 53.5 ± 1.6 46.3 ± 0.2 48.6 ± 0.3
3 (ls -l) 2.8 ± 0.1 3.0 ± 0.3 2.9 ± 0.2
4 (grep+wc) 6.1 ± 0.2 6.5 ± 0.1 6.5 ± 0.1
5 (make) 67.1 ± 0.6 51.1 ± 0.1 52.1 ± 0.2

Figure 20: Results of modified Andrew benchmark.

PERFECTLY SCALABLE SYSTEM

S
in

fo
n

ia
F

S

}

LinuxNFS phase 3

LinuxNFS

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250

tim
e

(n
or

m
al

iz
ed

)

cluster nodes (file system clients)

LinuxNFS, phase 2
LinuxNFS, phase 1
LinuxNFS, phase 5
LinuxNFS, phase 4
LinuxNFS, phase 3
SinfoniaFS, phase 1
SinfoniaFS, phase 2
SinfoniaFS, phase 5
SinfoniaFS, phase 4
SinfoniaFS, phase 3

Figure 21: Results of Andrew as we scale the system and the work-
load together. The x-axis is the number of nodes running Andrew
simultaneously. The y-axis is the duration of each phase relative to
a system with 1 client. Connectathon had similar results.

and increased the number of memory nodes and cluster nodes to-
gether while running a benchmark on each cluster node, in order
to see if any system overhead manifested itself as the system size
increased. We synchronized the start of each phase of the bench-
mark at all cluster nodes, to avoid intermingling phases. We ran
the same number of clients against the NFS server to be sure the
benchmark overloads the server. Figure 21 shows the results for
the Andrew benchmark, where the y-axis shows the duration of
each phase relative to a system with 1 memory node and 1 cluster
node.6 The horizontal line at 1 represents the performance of an
ideal perfectly scalable system. As can be seen, all the SinfoniaFS
curves are close to the ideal system: only 18%, 6%, 2%, 14%, and
3% higher for phases 1–5 respectively, which is a reasonable effi-
ciency. The result is very different for the NFS server, as it quickly
becomes overloaded, and cannot be simply scaled as SinfoniaFS
can be (the exception being phase 3, which scales because it almost
exclusively uses data cached on the client). The results of Connec-
tathon are very similar (not shown): all SinfoniaFS curves are flat
at y-value 1, while NFS server curves increase extremely rapidly,
except for phases 3, 4a, and 5b, which had 0 duration.

7.3 Group communication service
To evaluate the scalability characteristics of our implementation,

we ran a simple workload, measured its performance, and com-
pared it with a publicly available group communication toolkit,
Spread [1], version 3.17.4 (Jan 2007). In each experiment, we had
members broadcasting 64-byte messages as fast as possible (called
writers) and members receiving messages as fast as possible (called
readers). In all experiments, we report the aggregate read through-
put of all readers.

For SinfoniaGCS, we combine up to 128 messages into a larger
message as described in Section 6.3, to optimize the system for
throughput. In addition, each memory node, reader, and writer was
6For the experiment with 246 cluster nodes, we had to colocate cluster and
memory nodes, since we did not have enough machines. However, the prob-
ability a cluster node accessed a memory node in its own host was very
small.

 0

 3

 6

 9

 1 10 100 1000

m
sg

s/
s

(x
10

00
00

0)

readers

SinfoniaGCS-NVRAM
SinfoniaGCS-REPL
Spread

Figure 22: SinfoniaGCS base performance as we vary the number
of readers. There are 8 writers, and 8 memory nodes or Spread
daemons.

running on a separate machine. The Sinfonia mode was NVRAM
or REPL. In mode REPL, we placed primary memory nodes and
replicas in machines by themselves, without colocation.

For Spread, we evaluated two configurations. In the separated
configuration, each daemon and each group member had its own
machine, and each daemon served an equal number of members
(±1). In the colocated configuration, each group member had its
own machine with a local Spread daemon. For both configura-
tions, we used Spread’s AGREED MESS service type for sending
messages. We found that the aggregate read throughputs for the
colocated configurations were higher than those for the correspond-
ing separated configurations (by up to a factor of 2) in small con-
figurations, but dropped below the separated configuration as the
number of daemons exceeded 16–20. We present only the results
for the separated configuration, since it is more comparable to the
Sinfonia GCS configuration, and its read throughput scales better
than that of the colocated configuration. In addition, we ran Spread
without broadcast or IP multicast, since broadcasts disrupt other
applications, and IP multicast is often disabled or unsupported in
data centers. Since Spread is optimized for use with broadcast or
IP multicast, we expect that Spread would perform much better in
settings where these broadcasts are available.

7.3.1 Result: base performance
In the first experiment, we observe how SinfoniaGCS behaves as

we vary the number of readers (Figure 22). (In this and other fig-
ures, the 95% confidence intervals are too small to be visible.) We
fixed the number of writers and memory nodes to 8 each, and varied
the number of readers from 1 to 248. Spread used 8 daemons. For
SinfoniaGCS-NVRAM, we see that the aggregate throughput increases
linearly up to 20 readers and flattens out at about 64 readers to 8
million messages/second. After this point, the memory nodes have
reached their read-capacity and cannot offer more read bandwidth.
SinfoniaGCS using replication (SinfoniaGCS-REPL) performs simi-
larly. The throughput is considerably higher than that of Spread up
to 100 readers; we were unable to obtain reliable measurements for
Spread with more than 100 readers.

In the second experiment, we observe the behavior as we vary
the number of writers (Figure 23). We fixed the number of read-
ers to 16, the number of memory nodes to 8, and varied the num-
ber of writers from 1 to 222. We see that when there are fewer
writers than memory nodes, the throughput is below the peak be-
cause each queue is on a separate memory node, so not all memory
nodes are utilized. When the number of writers exceed the number
of memory nodes, aggregate throughput decreases gradually be-
cause (1) we reach the write capacity of the system, and additional
writers cannot increase aggregate throughput, and (2) additional
writers impose overhead and cause more contention for the global
tail thereby decreasing aggregate throughput. The throughput of
SinfoniaGCS-NVRAM considerably exceeds that of Spread through-
out the measured range. For 32 writers or fewer, SinfoniaGCS-REPL
performs only slightly worse than SinfoniaGCS-NVRAM (<10%)

 0

 2

 4

 6

 1 10 100 1000

m
sg

s/
s

(x
10

00
00

0)

writers

SinfoniaGCS-NVRAM
SinfoniaGCS-REPL
Spread

Figure 23: SinfoniaGCS base performance as we vary the number
of writers. There are 16 readers, and 8 memory nodes or Spread
daemons.

 0

 3

 6

 9

 1 10 100

m
sg

s/
s

(x
10

00
00

0)

memory nodes or Spread daemons

SinfoniaGCS-NVRAM
SinfoniaGCS-REPL
Spread

Figure 24: SinfoniaGCS scalability as we vary the number of mem-
ory nodes. There are 32 readers and 64 writers.

due to the increased latency of having primary-copy replication.
Surprisingly, SinfoniaGCS-REPL slightly outperforms SinfoniaGCS-
NVRAM for large number of writers because the increased latency
forces writers to write slower, which leads to less contention.

7.3.2 Results: scalability
In the third experiment, we observe the scalability as we increase

the number of memory nodes (Figure 24). Since the intra-rack bi-
section bandwidth is higher than the inter-rack bisection bandwidth
in our cluster, when readers and memory nodes were colocated in
the same rack, they provided better performance. As a result, we
ensured this property for 16 or fewer memory nodes, and for more
memory nodes, we colocated them as much as possible, ensuring
each rack had the same number of readers and memory nodes.
There were 32 readers, 64 writers, and we varied the number of
memory nodes from 4 to 64. We find that increasing the number
of memory nodes improves the throughput up to a point (16 mem-
ory nodes in this case), but the throughput flattens out after that.
This is due to the fixed number of readers and writers; as we see in
the next experiment, a higher aggregate throughput can be obtained
with more readers and writers. As in the other cases, the throughput
exceeds the Spread throughput considerably.

In the fourth experiment, we observe the scalability with total
system size (Figure 25). We used the same rack colocation rules for
readers and memory nodes as before. For each system size, there
was an equal number of readers, writers, and memory nodes. Sys-
tem size varied from 12 to 192 machines. For Sinfonia mode REPL,
the system size did not count the memory node replicas. We see
that the aggregate throughput increases through the entire range;
the rate of growth slows gradually as the system size increases. This
growth rate decrease occurs because (1) with more writers there is
more global tail contention, and (2) the overhead of processing and
updating per-queue metadata increases.

8. RELATED WORK
Services to help building large distributed systems include GFS

[13], Bigtable [6], Chubby [4], and MapReduce [9]. GFS is a
scalable file system that provides functions tailored for its use at
Google, such as atomic appends but otherwise weak consistency.
Bigtable is a distributed scalable store of extremely large amounts
of indexed data. Chubby is a centralized lock manager for coarse-

 0

 4

 8

 12

 0 40 80 120 160 200

m
sg

s/
s

(x
10

00
00

0)

system size

SinfoniaGCS-NVRAM
SinfoniaGCS-REPL
Spread

Figure 25: SinfoniaGCS scalability as we vary total system size
(total number of readers, writers, and memory nodes or daemons).

grained locks; it can store critical infrequently-changing data, as
with a name server or a configuration store. All these systems serve
as higher-level building blocks than Sinfonia, intended for higher-
level applications than Sinfonia applications. In fact, one might
imagine using our approach to build these systems. MapReduce
is a paradigm to concurrently process massive data sets distributed
over thousands of machines. Applications include distributed grep
and sort, and computing inverted indexes.

Sinfonia is inspired by database systems, transactional shared
memory, and distributed shared memory. Transactional shared
memory augments a machine with memory transactions [17]. Orig-
inal proposals required hardware changes, but subsequent work
[31] showed how to do it in software; more efficient proposals ap-
peared later [16, 15]. These systems are all targeted at multiproces-
sor machines rather than distributed systems.

Distributed shared memory (DSM) emulates a shared memory
environment over a distributed system. This line of work had
success limited to few applications because its objective was too
hard—to run existing shared memory applications transparently on
a distributed system. The loosely-coupled nature of distributed sys-
tems created hard efficiency and fault tolerance problems.

Plurix (e.g., [11]) is a DSM system with optimistic transactions
and a low-level implementation on its own OS to improve perfor-
mance and provide transparent remote memory access through vir-
tual memory. Plurix does not scale as Sinfonia does, since Plurix
transactions require IP broadcast to fetch pages and commit. The
granularity of access is a page, which produces false sharing in
small data structures. The largest Plurix system has 12 hosts [11],
and Plurix is not data center friendly because its frequent broad-
casts are disruptive to other applications. Plurix provides less relia-
bility than Sinfonia, as Plurix nodes are not replicated, transactions
are not durable, and fault tolerance is limited to checkpointing to
disk periodically (e.g., every 10s). Plurix applications include ray-
tracing and interactive 3D worlds.

Perdis [12] is a transactional distributed store designed to sup-
port cooperative engineering applications in WANs. Perdis has
long-lived transactions that span multiple LANs connected via a
WAN. In contrast, Sinfonia’s minitransactions are short-lived and
streamlined to scale well in a data center. Thor [21] is a distributed
object-oriented database system that provides optimistic transac-
tions. Data is structured as objects, and objects are manipulated via
type-checked method calls. While the Thor design allows transac-
tions that span objects at many servers, actual Thor systems evalu-
ated in the literature have only a single replicated server. Sinfonia
differs from Thor in many ways. A typical Sinfonia system has tens
or hundreds of memory nodes; data is unstructured, which imposes
less overhead, albeit at the cost of a lower-level programming in-
terface; and minitransactions are more streamlined than Thor trans-
actions. For example, Sinfonia takes only 2 network round-trips
to execute a minitransaction that checks that 2 flags at 2 memory
nodes are clear and, if so, sets both of them. With Thor, this re-
quires 3 round-trips: 1 round-trip to fetch both flags, plus 2 round-
trips to commit.

BerkeleyDB and Stasis [30] provide transactional storage at a
single node. Stasis has no support for distributed transactions,
while BerkeleyDB only has minimal support for it (it lacks a dis-
tributed transaction manager). Transactional support on a disk-
based system was proposed in Mime [7], which provided multi-
sector atomic writes and the ability to revoke tentative writes; how-
ever, all the disks in Mime were accessed through a single con-
troller.

Atomic transactions make a distributed system easier to under-
stand and program, and were proposed as a basic construct in sev-
eral distributed systems such as Argus [20], QuickSilver [29] and
Camelot [33]. The QuickSilver distributed operating system sup-
ports and uses atomic transactions pervasively, and the QuickSilver
distributed file system supports atomic access to files and direc-
tories on local and remote machines. Camelot was used to pro-
vide atomicity and permanence of server operations in the Coda
file system [26] by placing the metadata in Camelot’s recoverable
virtual memory. This abstraction was found to be useful because
it simplified crash recovery. However, the complexity of Camelot
led to poor scalability; later versions of Coda replaced Camelot
with the Lightweight Recoverable Virtual Memory [27], which dis-
pensed with distributed transactions, nested transactions and re-
covery from media failures, providing only atomicity and perma-
nence in the face of process failures. While this is adequate for
Coda, which provides only weak consistency for file operations,
distributed transactions, such as those provided by Sinfonia, are
highly desirable for many distributed applications.

Remote Direct Memory Access (RDMA) is an efficient way to
access data stored on a remote host while minimizing copying over-
head and CPU involvement [25]. RDMA could be used in a more
efficient implementation of Sinfonia than using message-passing
as we do. Persistent Memory [23] is a fast persistent solid-state
storage accessible over a network through RDMA, providing high
bandwidth and low latency, but without transactional support.

There is a rich literature on distributed file systems, including
several that are built over a high-level infrastructure designed to
simplify the development of distributed applications. The Box-
wood project [22] builds a cluster file system over a distributed
B-tree abstraction. This work differs from ours in three main ways.
First, Boxwood focuses on building storage applications rather
than infrastructure applications. Second, Boxwood considered rel-
atively small systems—up to 8 machines—rather than hundreds of
machines. Third, Boxwood provides higher-level data structures
than Sinfonia, but does not provide transactions. The Inversion
File System [24] is built over a Postgres database; this is a fairly
complex abstraction, and the performance of the file system was
poor.

Gribble et al.[14] propose a scalable distributed hash table for
constructing Internet services. Hash tables provide operations on
key-value pairs, which are higher-level than the unstructured ad-
dress spaces of Sinfonia. However, there is no support for transac-
tions, which is an important feature of Sinfonia for handling con-
currency and failures when data is distributed over many hosts.

9. CONCLUSION
We proposed a new paradigm for building scalable distributed

systems, based on streamlined minitransactions over unstructured
data, as provided by Sinfonia. This paradigm is quite general, given
the very different nature of the applications that we built with it (a
cluster file system and a group communication service). The main
benefit of Sinfonia is that it can shift concerns about failures and
distributed protocol design into the higher-level and easier problem
of designing data structures. We are currently developing other

distributed applications with Sinfonia, including a distributed lock
manager that maintains the state and wait queues for millions of
locks, and a distributed B-tree for thousands of clients.

Acknowledgments. We would like to thank Terence Kelly and
Jeff Mogul for helpful discussions; our shepherd Sharon Perl, the
SOSP reviewers, Xiaozhou Li, and Janet Wiener for many com-
ments that helped us improve the paper; and Yair Amir and John
Schultz for suggestions on how to configure Spread.

10. REFERENCES
[1] Y. Amir and J. Stanton. The Spread wide area group

communication system. Technical Report CNDS-98-4, The
Johns Hopkins University, July 1998.

[2] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony
in distributed systems. In Symposium on Operating Systhem
Principles, pages 123–138, Nov. 1987.

[3] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg.
The primary-backup approach. In S. J. Mullender, editor,
Distributed Systems, chapter 8. Addison-Wesley, 1993.

[4] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Symposium on Operating Systems
Design and Implementation, pages 335–350, Nov. 2006.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. BigTable: A distributed storage system for
structured data. In Symposium on Operating Systems Design
and Implementation, pages 205–218, Nov. 2006.

[7] C. Chao, R. English, D. Jacobson, A. Stepanov, and
J. Wilkes. Mime: a high performance storage device with
strong recovery guarantees. Technical Report
HPL-CSP-92-9, HP Laboratories, Nov. 1992.

[8] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive study. ACM
Computing Surveys, 33(4):1–43, December 2001.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Symposium on Operating
Systems Design and Implementation, pages 137–150, Dec.
2004.

[10] X. Défago, A. Schiper, and P. Urbán. Total order broadcast
and multicast algorithms: Taxonomy and survey. ACM
Computing Surveys, 36(4):372–421, Dec. 2004.

[11] M. Fakler, S. Frenz, R. Goeckelmann, M. Schoettner, and
P. Schulthess. Project Tetropolis—application of grid
computing to interactive virtual 3D worlds. In International
Conference on Hypermedia and Grid Systems, May 2005.

[12] P. Ferreira et al. Perdis: design, implementation, and use of a
persistent distributed store. In Recent Advances in
Distributed Systems, volume 1752 of LNCS, chapter 18.
Springer-Verlag, Feb. 2000.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Symposium on Operating Systems Principles,
pages 29–43, Oct. 2003.

[14] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler.
Scalable, distributed data structures for Internet service
construction. In Symposium on Operating Systems Design
and Implementation, pages 319–332, Oct. 2000.

[15] T. Harris and K. Fraser. Language support for lightweight
transactions. In Conference on Object-Oriented
Programming Systems, Languages and Applications, pages

388–402, Oct. 2003.
[16] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.

Software transactional memory for dynamic-sized data
structures. In Symposium on Principles of Distributed
Computing, pages 92–101, July 2003.

[17] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
International Symposium on Computer Architecture, pages
289–300, May 1993.

[18] H.-I. Hsiao and D. DeWitt. Chained declustering: a new
availability strategy for multiprocessor database machines. In
International Data Engineering Conference, pages 456–465,
Feb. 1990.

[19] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[20] B. Liskov. Distributed programming in Argus.
Commununications of the ACM, 31(3):300–312, 1988.

[21] B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing
persistent objects in distributed systems. In European
Conference on Object-Oriented Programming, pages
230–257, June 1999.

[22] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for
storage infrastructure. In Symposium on Operating Systems
Design and Implementation, pages 105–120, Dec. 2004.

[23] P. Mehra and S. Fineberg. Fast and flexible persistence: the
magic potion for fault-tolerance, scalability and performance
in online data stores. In International Parallel and
Distributed Processing Symposium - Workshop 11, page
206a, Apr. 2004.

[24] M. A. Olson. The design and implementation of the
Inversion File System. In USENIX Winter Conference, pages
205–218, Jan. 1993.

[25] RDMA Consortium. http://www.rdmaconsortium.org.
[26] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,

E. H. Siegel, and D. C. Steere. Coda: A highly available file
system for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447–459, Apr. 1990.

[27] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C. Steere,
and J. J. Kistler. Lightweight recoverable virtual memory.
ACM Transactions on Computer Systems, 12(1):33–57, Feb.
1994.

[28] A. Schiper and S. Toueg. From set membership to group
membership: A separation of concerns. IEEE Transactions
on Dependable and Secure Computing, 3(1):2–12, Feb. 2006.

[29] F. B. Schmuck and J. C. Wyllie. Experience with transactions
in QuickSilver. In Symposium on Operating Systems
Principles, pages 239–253, Oct. 1991.

[30] R. Sears and E. Brewer. Stasis: Flexible transactional
storage. In Symposium on Operating Systems Design and
Implementation, pages 29–44, Oct. 2006.

[31] N. Shavit and D. Touitou. Software transactional memory. In
Symposium on Principles of Distributed Computing, pages
204–213, Aug. 1995.

[32] D. Skeen and M. Stonebraker. A formal model of crash
recovery in a distributed system. IEEE Transactions on
Software Engineering, 9(3):219–228, May 1983.

[33] A. Z. Spector et al. Camelot: a distributed transaction facility
for Mach and the Internet — an interim report. Research
paper CMU-CS-87-129, Carnegie Mellon University,
Computer Science Dept., June 1987.

