RING: A Client-Server System
for Multi-User Virtual Environments

Thomas A. Funkhouser
AT&T Bell Laboratories ¥

Abstract

This paper describes the client-server design, implementation
and experimental results for a system that supports real-time
visual interaction between a large number of users in a shared
3D virtual environment. The key feature of the system is that
server-based visibility algorithms compute potential visual in-
teractions between entities representing users in order to re-
duce the number of messages required to maintain consistent
state among many workstations distributed across a wide-area
network. When an entity changes state, update messages are
sent only to workstations with entities that can potentially
perceive the change — i.e., ones to which the update is visi-
ble. Initial experiments show a 40x decrease in the number of
messages processed by client workstations during tests with
1024 entities interacting in a large densely occluded virtual
environment.

CR Categories and Subject Descriptors:
[Computer Graphics]: 1.3.7 Three-Dimensional Graphics
and Realism — Virtual Reality.

Additional Key Words and Phrases: Visual simulation,
multi-user systems, virtual reality, 3D virtual environments,
real-time graphics, client-server design, distributed systems.

1 Introduction

In a multi-user visual simulation system, users run an interac-
tive interface program on (usually distinct) workstations con-
nected to each other via a network. The interface program
simulates the experience of immersion in a virtual environ-
ment by rendering images of the environment as perceived
from the user’s simulated viewpoint. Each user is represented
in the shared virtual environment by an entity rendered on
every other user’s workstation, and multi-user interaction is
supported by matching user actions to entity updates in the

600 Mountain Avenue, 2A-202, Murray Hill, NJ 07974,
funk@research.att.com

shared virtual environment. Applications for these systems
include distributed training simulations, collaborative design,
virtual meetings, and multiplayer games.

A difficult challenge in multi-user visual simulation is main-
taining consistent state among a large number of worksta-
tions distributed over a wide-area network. Since three di-
mensional rendering at interactive rates requires fast access
to the geometric database, shared portions of the virtual en-
vironment (including dynamic entity states) are replicated on
every participating workstation. As a result, whenever any
entity changes state (e.g., moves) or modifies the shared en-
vironment, an appropriate update must be applied to every
copy of the database in order to maintain consistent state
(see Figure 1).

z Shared 3D -
~Virtual Environment:

Figure 1: Multi-user systems must maintain consistency be-
tween entities (A, B, C, and D) replicated on multiple work-
stations.

Implementing visual simulation systems for large numbers
of users is especially challenging because updates can occur at
extremely high rates. If N entities move through a shared vir-
tual environment simultaneously, each modifying its position
and/or orientation M times per second, then M * N updates
are generated to a shared database per second. Moreover,
updates must be propagated to participating workstations in
near real-time since large variances or delays in updates can
result in visually perceptible jerky or latent motion, and thus
may be disturbing to users. As a result, general-purpose dis-
tributed database systems are not adequate for use in multi-
user visual simulation applications, and special-purpose mes-
saging protocols are typically used to maintain consistent state
in multi-user visual simulation systems [9, 13].

2 Previous work

Numerous experimental virtual reality systems and multi-
player games have been developed for real time interaction
in shared virtual environments. Unfortunately, most existing
systems do not scale well to large numbers of simultaneous
users.

Reality Built For Two [2], VEOS [4], and MR Toolkit [14]
are multi-user virtual reality systems that maintain consis-
tent state among N workstations by sending a point-to-point
message to each of N-1 workstations whenever any entity in
the distributed simulation changes state. This approach yields
O(N?) update messages during every simulation step (see Fig-
ure 2), and thus does not scale to many simultaneous users
before the network gets saturated.

C
®
D Point-to—-Point
Connections
i ; c
B

Figure 2: Systems using point-to-point connections pass
O(N?) update messages (labeled arrows) during each simu-
lation step.

SIMNET [5], NPSNET [17], and VERN [3] use broadcast
messages to send updates to all other workstations participat-
ing in a virtual environment at once. Although, this approach
cuts down on the total number of messages transmitted to
O(N), every workstation still must process a message when-
ever any entity in the distributed simulation changes state
(see Figure 3). Since every workstation must store data and
process update messages and/or simulate behavior for all N
entities during every simulation step, these systems do not
scale beyond the capabilities of the least powerful participat-
ing workstation. Experiences with SIMNET and NPSNET
show that a significant percentage of every workstation’s pro-
cessing capability is used just to read update messages from
other workstations during large simulations; and, therefore,
broadcast protocols are not practical for more than a few hun-
dred users on inexpensive workstations [17].

In order to support very large numbers of users (> 1000) in-
teracting simultaneously in a distributed virtual environment
it is necessary to develop a system design and communication
protocol that does not require sending update messages to
all participating hosts for every entity state change. Kazman
has proposed a system design, called WAVES, in which mes-
sage managers mediate communication between hosts, possi-
bly culling irrelevant messages [10, 11]. His approach is very
similar to the one presented in this paper. One difference is
that this paper presents algorithms and experimental results
for visibility-based message culling during large simulations.

Broadcast
Network

Figure 3: Systems using broadcast messages pass only O(N)
updates each simulation step. But, every workstation still
must process every update message.

3 Overview of Approach

This paper describes a system (called RING) that supports
interaction between large numbers of users in virtual envi-
ronments with dense occlusion (e.g., buildings, cities, etc.).
RING takes advantage of the fact that state changes must be
propagated only to hosts containing entities that can possibly
perceive the change — i.e., the ones that can see it. Object-
space visibility algorithms are used to compute the region of
influence for each state change, and then update messages are
sent only to the small subset of workstations to which the
update is relevant.

The key idea is illustrated in Figure 4. Although entities
A, B, C, and D (filled circles) all inhabit the same virtual
environment, very little visual interaction (hatched polygons)
is possible due to the occlusion of walls (solid lines). In fact,
in this example, only one visual interaction is possible — entity
A can see entity B. Therefore, only one update message must
be sent for each update to entity B’s position in real-time (to
the workstation with entity A). All other entities need not
distribute any update messages in real-time since they are not
visible to any other entity. From this example, we see that it
is possible to greatly reduce the number of messages passed in
real-time to maintain consistent state among multiple entities
in a densely occluded environment using line-of-sight visibility
to determine the region of influence for each update.

Only B is __L|

visible to A

—

|
|

?

Figure 4: A system that culls messages based on entity-entity
visibility may be able to reduce the number of messages pro-
cessed by each workstation in densely occluded environments.

The following section describes the RING system design.
Results of experiments with the system are presented in Sec-
tion 5, while a discussion of alternate approaches and possible
future work appears in Section 6. Finally, Section 7 contains
a brief summary and conclusion.

4 RING System Design

RING represents a virtual environment as a set of indepen-
dent entities each of which has a geometric description and
a behavior. Some entities are static (e.g., terrain, buildings,
etc.), whereas others have dynamic behavior that can be either
autonomous (e.g., robots) or controlled by a user via input
devices (e.g., vehicles). Distributed simulation occurs when
multiple entities interact in a shared virtual environment by
sending messages to one another to announce updates to their
own geometry or behavior, modifications to the shared envi-
ronment, or impact on other entities.

Every RING entity is managed by exactly one client work-
station. Clients execute the programs necessary to generate
behavior for their entities. They may map user input to con-
trol of particular entities and may include viewing capabilities
in which the virtual environment is displayed on the client
workstation screen from the point of view of one or more of its
entities. In addition to managing their own entities (local en-
tities), clients maintain surrogates for some entities managed
by other clients (remote entities). Surrogates contain (often
simplified) representations for the entity’s geometry and be-
havior. When a client receives an update message for an en-
tity managed by another client, it updates the geometric and
behavioral models for the entity’s local surrogate. Between
updates, surrogate behavior is simulated by every client.

Communication between clients is managed by servers.
Clients do not send messages directly to other clients, but in-
stead send them to servers which forward them to other client
and server workstations participating in the same distributed
simulation (see Figure 5). A key feature of this client-server
design is that servers can process messages before propagating
them to other workstations, culling, augmenting, or altering
them. For instance, a server may determine that a particular
update message is relevant only to a small subset of clients
and then propagate the message only to those clients or their
servers. In addition, a server may send clients auxiliary mes-
sages that contain status information helpful for future client
processing. Finally, a server may replace some set of mes-
sages intended for a client with another (possibly simpler) set
of messages better suited to the client’s performance capabil-
ities. The aim of this client-server design is to shift some of
the processing burden away from the client workstations and
into servers so that larger, more affordable, multi-user visual
simulation systems can be built using primarily low-cost client
workstations.

In the current implementation, RING servers forward up-
date messages in real-time only to other servers and clients
managing entities that can possibly “see” the effects of the
update. Server-based message culling is implemented using
precomputed line-of-sight visibility information. Prior to the
multi-user simulation, the shared virtual environment is par-
titioned into a spatial subdivision of cells whose boundaries
are comprised of the static, axis-aligned polygons of the vir-
tual environment [1, 15]. A visibility precomputation is per-

Client D

Server

‘I Server

Server

~Client
C

Figure 5: RING servers manage communication between
clients, possibly culling, augmenting, or altering messages.

formed in which the set of cells potentially visible to each cell
is determined by tracing beams of possible sight-lines through
transparent cell boundaries [15, 16] (see Figure 6). During
the multi-user simulation, servers keep track of which cells
contain which entities by exchanging “periodic” update mes-
sages when entities cross cell boundaries. Real-time update
messages are propagated only to servers and clients contain-
ing entities inside some cell visible to the one containing the
updated entity. Since an entity’s visibility is conservatively
over-estimated by the precomputed visibility of its containing
cell, this algorithm allows servers to process update messages
quickly using cell visibility “look-ups” rather than more exact
real-time entity visibility computations which would be too
expensive on currently available workstations.

TR

Figure 6: Cell-to-cell visibility (stipple) is the set of cells
reached by some sight-line from anywhere in the source cell
(dark box) passing only through transparent portals (dash
lines) and no opaque walls (black lines). It is a useful, pre-
computed overestimate of the visibility of any entity resident
in the source cell.

As an example of RING server operation, consider the flow
of messages between clients A, B, C, and D for the entities
shown in Figure 4 connected to servers in the topology shown
in Figure 5. Figure 7 shows the surrogates (small squares
labeled by entity) and flow of update messages (arrows labeled
by entity) for each of the four entities in this example.

o If entity A is modified: client A sends an update message
to server X. Server X propagates that message to server
Y, but not to server Z because entities C and D are not
inside cells in the cell-to-cell visibility of the cell contain-
ing entity A. Server Y forwards the message to Client B
which updates its local surrogate for entity A.

o If entity B is modified: client B sends an update message
to server Y. Server Y then propagates that message to
servers X and Z, which forward it to clients A and C.
Server Z does not send the update message to client D
because the cell containing entity D is not in the cell-to-
cell visibility of the cell containing entity B.

o If entity C is modified: client C sends an update message
to server Z. Server Z propagates that message to server
Y, which then forwards the message to Client B. Server Z
does not send the message to either server X or client D
because neither is managing entities in the visibility set
for entity C.

o If entity D is modified: client D sends an update message
to server Z. Server Z does not forward the message to
any other server or client because no other entity can
potentially see entity D.

Client D

Client A

of

Server X
Server Z
kL
Client B ’@
5 Server Y %
: e A/©/ Client C
C

Figure 7: Flow of update messages (labeled arrows) for up-
dates to entities A, B, C, and D arranged in a virtual environ-
ment as shown in Figure 4.

RING servers allow each client workstation to maintain sur-
rogates for only the subset of remote entities visible to at least
one entity local to the client. All other remote entities are ir-
relevant to the client so there is no need to waste storage
space or behavioral simulation processing for them. To sup-
port this feature, servers send their clients an “Add” message
each time a remote entity enters a cell potentially visible to
one of the client’s local entities for the first time. A “Remove”
message is sent when the server determines that the entity has
left the client’s visible region. As entities move through the
environment, servers augment update messages with “Add”
and “Remove” messages notifying clients that remote entities
have become relevant or irrelevant to the client’s local enti-
ties. Since the system uses an unreliable network protocol,
the “Add” and “Remove” messages are considered hints and

need not necessarily be processed by clients. However, they al-
low a client to store and simulate a small subset of the entities
with little additional processing or message traffic.

The primary advantage of the RING system design is that
the storage, processing, and network bandwidth requirements
of the client workstations are not dependent on the number of
entities in the entire distributed simulation. Client worksta-
tions must store, simulate, and process update messages only
for the subset of entities visible to one of the client’s local en-
tities. In densely occluded virtual environments, visible sets
tend to be constant size (e.g., how many rooms you can see
looking into the hallway from your office usually does not de-
pend on the size of your building or whether your building is
surrounded by a large city), so the burden on individual client
workstations does not grow as the entire system does.

Another advantage is that high-level management of the
virtual environment may be performed by servers without the
involvement of every client. For instance, adding or removing
an entity to or from the virtual environment requires noti-
fication of only one server. That server handles notification
of other servers and clients. Also, the client-server design al-
lows use of efficient networks and protocols available between
server workstations, but not universally available to all client
workstations. For instance, clients may connect to servers
via low-bandwidth networks, while servers communicate with
each other via high-bandwidth networks.

The storage and processing requirements of RING servers
are within practical limits. Unlike clients, servers do not have
to store display data (e.g., polygons, textures, etc.). But,
they must maintain spatial subdivision and visibility informa-
tion for the virtual environment (typically < 20MB for large
environments) and a surrogate representation for every entity
in the environment (currently 48 bytes per entity). As server
storage requirements grow linearly with the total number of
entities, the size of server workstation memory may theoreti-
cally limit the number of entities that are able to share a vir-
tual environment simultaneously. However, this is not likely
to be a problem in practice since a workstation with 64MB of
memory can accommodate nearly one million entities.

Server workstation processing is also within reasonable
bounds. Servers must process messages in real-time only for
entities visible to some entity managed by one of their clients;
they are not required to simulate entity behavior between up-
dates; and, they do not render images of the virtual environ-
ment. As a result, the memory capacity and processing power
of standard UNIX workstations are adequate for RING servers
in densely occluded virtual environments with very large num-
bers of simultaneous users.

The disadvantage of the RING system design is that ex-
tra latency is introduced when messages are routed through
servers. Rather than sending messages directly between
clients, RING routes each one through at least one server,
and possibly two. Computations are performed in the servers
before messages are propagated further adding to latency. So
far, the extra latency due to server processing has not been
noticeable during experiments. Additional work will have to
be done to quantify the latency costs and to determine which
types of entity interactions are sensitive to latency issues.

5 Experimental Results

A prototype multi-user simulation system has been imple-
mented with the client-server design described in the previous
section. The system runs on Silicon Graphics workstations
and uses UDP/IP datagrams for message passing. This sec-
tion presents results of experiments with this system manag-
ing many entities interacting in large densely occluded virtual
environments. The virtual environments used in these ex-
periments were mazes of “rooms” connected by “hallways.”
They were constructed by instancing a simple floor-plan 1, 2,
4, 8, 16, and 32 times in a square tiling pattern. Each tile
contained 25 rooms (counting hallways) and had 724 poly-
gons (see Figure 8). The largest environment used in these
tests had 23,168 polygons which formed 2,219 cells. The spa-
tial subdivision and visibility information for this environment
took 99 seconds to compute and required 11.2MB of storage.

TR

o L :
NN §§\ SN
@%\% ‘\ ‘ AN

NN

IR
RN \\kv‘a‘m‘a\:
N

Figure 8: One tile of virtual environment used in tests.

Experiments were run with several environment sizes and
various numbers of entities, clients, and servers to charac-
terize the scalability of the system design. During these
experiments, entities navigated through the virtual environ-
ment “randomly” following piecewise linear paths in random-
ized directions for randomized distances. Clients sent update
messages only for changes in derivatives of entity position
and/or orientation (i.e., dead-reckoning) while other clients
simulated intermediate positions with linear “smooth-back.”
Update messages containing 40 bytes (message-type[4], entity-
ID[4], target-position[12], target-orientation[12], positional-
velocity[4], and rotational-velocity[4]) were generated for each
entity once every 2.3 seconds on average with this “random”
navigational behavior.

To investigate the message processing requirements of a sin-
gle client in RING, we performed tests measuring the rates of
messages received by clients managing one entity navigating
through virtual environments containing 64, 128, 256, 512,
and 1024 entities managed by other clients. Each test was
repeated in virtual environments containing 25, 50, 100, 200,
400, and 800 rooms. Plates I and II contain images captured
during tests with 512 entities in a 400 room environment. Ta-
ble 1 and Figure 9 show average rates of messages received by
individual clients in each test. In Figure 9, points represent-
ing the same number of total entities are connected by lines,
while points representing the same density of entities are at
the same horizontal position in the plot.

Entities # # Client<>Server
Per Room | Entities | Rooms || Output \ Input
10.24 1024 100 0.44 61.37
10.24 512 50 0.43 70.43
10.24 256 25 0.47 53.68
5.12 1024 200 0.55 55.93
5.12 512 100 0.45 37.37
5.12 256 50 0.44 33.20
5.12 128 25 0.46 27.26
2.56 1024 400 0.50 24.56
2.56 512 200 0.47 19.88
2.56 256 100 0.46 23.19
2.56 128 50 0.41 17.42
2.56 64 25 0.46 13.65
1.28 1024 800 0.50 11.35
1.28 512 400 0.46 14.18
1.28 256 200 0.43 13.28
1.28 128 100 0.45 12.08
1.28 64 50 0.43 8.39
0.64 512 800 0.40 4.62
0.64 256 400 0.45 6.57
0.64 128 200 0.50 6.41
0.64 64 100 0.46 5.37
0.32 256 800 0.35 3.18
0.32 128 400 0.38 3.20
0.32 64 200 0.33 3.35
0.16 128 800 0.38 1.91
0.16 64 400 0.40 1.68
0.08 64 800 0.32 0.52

Table 1: Average message processing rates (messages per sec-
ond) measured in a single client (managing one entity) during
experiments with 64, 128, 256, 512, and 1024 entities in virtual
environments with 25, 50, 100, 200, 400, and 800 “rooms.”

80 T T T i j

70 L & 1024 Entities x
Le] > 512 Entities
c o 256 Entities a
S 60 + 128Entties o]
(5] < 64 Entities s B
0 50 - s . 1
a e L
g 40} e]
@ S e
g 30 r R |
B 20
%)
(]
S 10 |

0 : ‘ : : ‘

0 2 4 6 8 10

Entities per Room

Figure 9: Average rate of messages sent to a single client
(managing one entity) during tests with 64, 128, 256, 512,
and 1024 entities interacting in virtual environments with 25,
50, 100, 200, 400, and 800 “rooms.” Horizontal axis represents
the density of entities in the environment.

From the grouping of points in the plot, we see that the
rate of messages received by a single client is dependent more
on the density of entities in the virtual environment than the
total number of entities. This is because each client has a
relatively constant sized region of interest (its visible region)
which is independent of the total size of the environment or
the total number of entities inhabiting it. During the test
with 1024 entities simultaneously navigating through an 800
room environment each client processed only 11.35 messages
(4360 bits) per second on average (row 13 of Table 1). This
was approximately 2.5% of the 450 messages per second that
would have been processed by each client in a system without
visibility-based culling — a 40x decrease.

To characterize the message processing requirements of a
single server in RING, we performed tests with various num-
bers of servers managing communication for 16 clients and
256 entities distributed evenly across the clients and servers
in a virtual environment with 800 rooms. Table 2 lists aver-
age server—client, server<»server, and total message rates for
a single server during tests with 1, 2, 4, 8, and 16 servers. Fig-
ure 10 shows a plot of total message rates per server measured
during each of these tests.

Server«s Client Server<>Server Total
|| Tnput | Output || Tnput | Output || Input | Output
1 107.1 634.1 0.0 0.0 107.1 634.1
2 51.8 296.6 46.9 48.5 98.6 345.1
4 26.3 161.1 69.3 70.6 95.6 231.7
8 13.2 78.7 76.5 78.8 89.7 157.5
16 6.7 39.4 78.9 81.5 85.6 120.9

Table 2: Average message processing rates (messages per sec-
ond) measured in a single server during tests with 1, 2, 4, 8,
and 16 servers managing communication for 16 clients and 256
entities distributed evenly across the clients and servers in a
virtual environment with 800 rooms.

5 600 f | 1
c 4

o 4

S 500 r i Output Messages |
n

B 400 r '\v |
o

® 300 1
2 -

»n 200 |
@ Input Messages -

= 00—

O 1 1 1 1 1 1 1 1
0 2 4 6 8§ 10 12 14 16

Number of Servers

Figure 10: Average rates of messages sent to (input) and from
(output) a single server during tests with 1, 2, 4, 8, and 16
servers managing communication for 16 clients and 256 en-
tities distributed evenly across the clients and servers in a
virtual environment with 800 rooms.

As the number of servers increases, the total number of
messages input and output by a single server decreases. This
phenomenon is aided by the fact that update messages are
propagated only to servers attached to clients with entities
that can potentially see the updated entity. In the test with
16 servers, 74% of the real-time server<sserver messages are
culled due to visibility (i.e., the 16 entities managed by each
of the 16 servers cumulatively see 26% of the environment).
These results are encouraging since visibility-based message
culling becomes more effective as the number of servers in-
creases and less of the model becomes relevant to each server.

From these results, we conclude that it is possible to build
large multi-user visual simulation systems using a client-server
design. We have found that server-based message processing
algorithms which cull messages based on the three dimensional
geometry of the virtual environment can be effective at reduc-
ing the network traffic into client workstations. As a result,
for sufficiently occluded virtual environments, it is possible to
build large, affordable multi-user virtual environments using
inexpensive client workstations with low-bandwidth network
connections, while higher performance workstations are re-
quired only for the relatively few servers.

6 Discussion

Several alternate approaches and future extensions are possi-
ble for this system.

Multicast

In our first experiments with multi-user virtual environments,
we used IP multicast to send update messages directly be-
tween clients. The general idea is to map entity properties into
multicast groups, and send update messages only to relevant
groups [6]. For instance, Macedonia [12] partitions a virtual
world into a 2D grid of hexagonal shaped cells each of which
is represented by a separate multicast group. Entities localize
their visual interactions by sending updates only to the multi-
cast group representing the cell in which they reside, and they
listen only to multicast groups representing cells within some
radius.

The multicast approach is similar to the RING client-server
approach for wide-area networks. In both cases, intermediate
machines may cull messages rather than propagating them to
all participating workstations. However, using multicast, mes-
sage culling is done by routers at the network layer, whereas,
in RING, message culling is done by server machines at the
application layer (see Figure 11). The advantages of the mul-
ticast approach are that: 1) fewer messages must be passed
if clients are connected directly to a multicast-capable LAN
(e.g., ethernet), and 2) latency is reduced due to faster mes-
sage routing. The disadvantages are that: 1) delays associated
with joining and leaving multicast groups make it impractical
to use highly dynamic entity properties for multicast group
mappings, 2) the number of unique multicast groups accessi-
ble to any one application may not be sufficient for complex
virtual environments, and 3) multicast is not generally avail-
able across wide-area networks to many types of networked
computers (e.g., PCs with modems).

The advantage of the RING client-server approach is that
very dynamic and complex message processing may be per-

Server Layers

- o

7/ I Application Layer
RING Server

7/

7

Semenies)
=]

Network Layer

Multicast
Router

f

~~~~~~~~ ..-1 Client

Figure 11: RING servers process messages in the application
layer using 3D model and semantic information. Multicast
routers use only IP addressing in the network layer.

formed by servers. In contrast to multicast routers, which can
only cull messages based on a relatively small, static set of
multicast groups, RING servers can cull messages using high-
level geometric algorithms and knowledge regarding a multi-
plicity of highly dynamic entity attributes (e.g., location, ori-
entation, velocity, etc.) and interaction types (e.g., visibility,
sound, collision, etc.). Since RING servers can take advantage
of knowledge regarding message semantics and the 3D geome-
try of the virtual environment directly, they can execute more
effective and flexible culling algorithms than would be possi-
ble using only IP address and port mappings. Furthermore,
unlike multicast routers, RING servers may process, augment,
and alter messages in addition to culling them. For instance,
RING servers already augment update messages with “Add”
and “Remove” messages to inform clients that entities are en-
tering or leaving their potentially visible sets.

Server Topology

We have experimented with a variety of topologies for con-
necting RING clients and servers. For practical reasons, we
have focused mainly on arrangements in which clients com-
municate with a single server. However, depending on the ca-
pabilities of available workstations and networks, clients can
send messages to server(s) via unicast or multicast. Clients
can choose server(s) to manage their messages statically (i.e.,
all of a client’s messages are sent to the same server(s)) or
dynamically (e.g., based on the position of the updated en-
tity). Servers have similar choices for distribution of messages
among themselves, but can also be arranged in a hierarchy in
which some servers manage communication between others.
Perhaps the most promising topologies are those in which
servers manage communication between entities in separate
regions of the virtual environment. For instance, we have im-
plemented protocols with which entities migrate to a server
managing the region of the environment containing the cen-
troid of its enclosing cell. The advantage of this approach is
that server-server communication is greatly reduced if there

is relatively little inter-visibility between regions. In such
cases, most real-time updates affect only entities managed by
the same server, and periodic updates must be passed only
to servers whose region is visible to the updated entity. In
early experiments, more than 95% of server-server messages
are eliminated with regional servers. Further work is required
to fully investigate the trade-offs between regional and other
types of client-server topologies.

Multiresolution Simulation

An extension to RING currently being investigated is to use
multiresolution simulation to reduce network traffic and client
behavioral simulation processing. One idea is to allow RING
servers to process sequences of messages and elide updates
based on the perceptible importance to each client’s entities.
For example, consider the situation shown in Figure 12. Al-
though A can see both B and E, B is closer to A. Thus, up-
dates to B may be more important to A than updates to E,
and could be sent to A at a finer resolution. In fact, E may
be far enough away that small updates are imperceptible to
A, so they can be elided completely. More generally, RING
servers can alter any sequence of update messages for any en-
tity dynamically to meet the perceptible quality required by
each client. Finally, time critical computing algorithms can be
used to determine an “optimal” set of messages to send to each
client based on network connection bandwidths, workstation
processing capabilities, and many other real-time performance
factors (i.e., in a manner similar to that used in [8]).

o
4

Update B in A at [——
fine resolution™

X

XX
odele

o

<
0l

X

Update E in A at |
coarse resolution

Figure 12: RING Servers may propagate sequences of update
messages to client A at finer resolutions for entity B, which is
nearby, than for entity E, which is far away.

Multiresolution simulation and time critical computing al-
gorithms can also be useful for behavioral simulation in RING
clients. Every client simulates behavior for every potentially
visible remote entity between updates. If surrogate behaviors
can be described at multiple resolutions, simpler behavioral
models can be used for entities that are perceptibly less im-
portant. For instance, in a flight simulator, very detailed be-
havioral models might be used to simulate an airplane just off
the wing of a local entity, whereas coarse resolution behavioral
models can be used to simulate an airplane that is far away
and just barely visible on the horizon. By allowing clients to
choose a behavioral model to simulate for each remote entity
dynamically based on its perceptible importance to local en-
tities, we can further reduce the processing requirements of
client workstations.



Interaction Types

Although RING servers currently support only visual interac-
tions, we expect that other types of interactions (sound, colli-
sion, etc.) can benefit from similar server-based message pro-
cessing techniques. We are working on extensions to RING to
support more general types of interactions and environments.

7 Conclusion

RING is a system for managing communication between mul-
tiple users interacting in a shared three dimensional virtual en-
vironment. It uses a client-server design along with visibility-
based message culling algorithms to greatly reduce the mes-
sage traffic required to maintain consistent state during multi-
user visual simulations. Each client workstation must store in
memory, process update messages, and simulate behavior for
only a small subset of the entities participating in the entire
distributed simulation — i.e., the ones visible to its entities.
Inexpensive workstations with little storage capacity, slower
cpus, and low bandwidth network connections may be used for
clients, while high performance workstations and high band-
width networks are required only for the relatively few servers
and their interconnections. As a result, this client-server sys-
tem design scales affordably to very large numbers of users
interacting in densely occluded virtual environments.

Acknowledgements

I am grateful to Seth Teller who provided spatial subdivision
and visibility algorithms. Initial experiments with multi-user
virtual environments were based upon work performed with
Seth and other members of the UC Berkeley Walkthrough
Group under the guidance of Carlo Séquin. Thanks to David
Kristol who helped me with the networking aspects of this
system. Finally, I'd like to thank Martha whose support is
always appreciated.

References

[1] Airey, John M., John H. Rohlf, and Frederick P. Brooks,
Jr., Towards Image Realism with Interactive Update
Rates in Complex Virtual Building Environments. ACM
SIGGRAPH Special Issue on 1990 Symposium on Inter-
active 3D Graphics, 24, 2 (1990), 41-50.

[2] Blanchard, C., S. Gurgess, Y. Harvill, J. Lanier, A. Lasko,
M. Oberman, and M. Teitel, Reality Built for Two: A
Virtual Reality Tool. ACM SIGGRAPH Special Issue on
1990 Symposium on Interactive 8D Graphics, (Snowbird,
Utah), 1990, 35-36.

[3] Blau, Brian, Charles E. Hughes, Michael J. Moshell,
and Curtis Lisle, Networked Virtual Environments. ACM
SIGGRAPH Special Issue on 1992 Symposium on Inter-
active 3D Graphics, (Cambridge, MA), 1992, 157-164.

[4] Bricken, William, and Geoffrey Coco The VEQS Project.
Technical Report, Human Interface Technology Labora-
tory, University of Washington, 1993.

[6] Calvin, James, Alan Dickens, Bob Gaines, Paul Met-
zger, Dale Miller, and Dan Owen, The SIMNET Virtual
World Architecture. Proceedings of the IEEE Virtual Re-
ality Annual International Symposium, September, 1993,
450-455.

[6] Carlsson, Christer, and Olof Hafsand, Dive: A Multi-User
Virtual Reality System. Proceedings of the IEEE Vir-

tual Reality Annual International Symposium, Septem-
ber, 1993, 394-401.

[7] Funkhouser, Thomas A., Carlo H. Séquin, and Seth J.
Teller, Management of Large Amounts of Data in Inter-
active Building Walkthroughs. ACM SIGGRAPH Special
Issue on 1992 Symposium on Interactive 3D Graphics,
(Cambridge, MA), 1992, 11-20.

[8] Funkhouser, Thomas A., and Carlo H. Séquin. Adaptive
Display Algorithm for Interactive Frame Rates During
Visualization of Complex Virtual Environments. Com-
puter Graphics (SIGGRAPH 93), 27, 247-254..

[9] Institute of Electrical and Electronics Engineers (IEEE),
IEEE P1278 - Standard for Information Technology —
Distributed Simulation Application — Process and Data
Entity Interchange Formats.

[10] Kazman, Rick, Making WAVES: On the Design of Archi-
tectures for Low-end Distributed Virtual Environments.
Proceedings of IEEE Virtual Reality Annual International
Symposium, September 1993, 443-449.

[11] Kazman, Rick, Load Balancing, Latency Management
and Separation of Concerns in a Distributed Virtual
World. Parallel Computations - Paradigms and Applica-
tions, A. Zomaya (ed.), Chapman & Hall, 1995, to ap-
pear.

[12] Macedonia, Michael, R. Michael J. Zyda, David R. Pratt,
and Paul T Barham, Exploiting Reality with Multicast
Groups: A Network Architecture for Large Scale Virtual
Environments. To appear in Proceedings of IEEE Virtual
Reality Annual International Symposium, 1995.

[13] Pope, Arthur R., The SIMNET Network and Protocols.
Technical Report 9120, LORAL Advanced Distributed
Simulation, Cambridge, MA, June, 1991.

[14] Shaw, Chris, and Mark Green, The MR Toolkit Peers
Package and Experiment. Proceedings of IEEE Vir-
tual Reality Annual International Symposium, September
1993, 463-469.

[15] Teller, Seth J., and Carlo H. Séquin, Visibility Prepro-
cessing for Interactive Walkthroughs. Computer Graphics
(SIGGRAPH 91). 25, 4, 61-69.

[16] Teller, Seth J., Visibility Computations in Densely Oc-
cluded Polyhedral Environments. Ph.D. thesis, Computer
Science Division (EECS), University of California, Berke-
ley, 1992. Also available as UC Berkeley technical report
UCB/CSD-92-708.

[17] Zyda, Michael J., David R. Pratt, John S. Falby, Chuck
Lombardo, and Kristen M. Kelleher, The Software Re-
quired for the Computer Generation of Virtual Environ-
ments. Presence, 2, 2 (March 1993), 130-140.



7 J‘—-ﬂ' r‘-'_lﬁl 'I_...-_\i \-\‘

I—"_ .I— f— k \‘ \ \

- 4 L-— \_—
B '—f 1 L'— l i \—\

Yy el
LR [ X

Plate I: Top-down view of a multi-user virtual environment with 400 rooms and 512 simultaneously moving entities
(represented by yellow spheres with green orientation vectors).

Plate II: Image of same multi-user virtual environment shown in Plate I, rendered from the viewpoint of one entity.
Client managing this entity must process updates, simulate behavior, and store surrogates for only 14 remote entities
(2.7% of all entities) due to message processing in RING servers.






