Rationality and Traffic Attraction Incentives for Honest Path Announcement in BGP

Sharon Goldberg Shai Halevi

Aaron D. Jaggard Vijay Ramachandran Rebecca N. Wright

SIGCOMM 2008

Incentives and Security

We use game theory to understand the which secure protocols should be deployed in the Internet.

We ask: Does traffic on the Internet actually follow the paths announced in **BGP**?

Approach: Assume that nodes are economic entities

They are **rational** -- try to maximize utility.

Our Results: Mostly bad news.

- We find that cryptographically authenticating routing messages is not sufficient. Policy
- ... unless we also make unrealistic assumptions about routing policies.
- Results are mostly descriptive, not prescriptive

2/24

\$

AS

BGP: The Interdomain Routing Protocol (1)

The Border Gateway Protocol (BGP) is the routing protocol that sets up paths between Autonomous Systems (ASes).

Forwarding: Node use **single** outgoing link for all traffic to destination. **Rankings:** Static and local; usually based on economic relationships.

BGP: The Interdomain Routing Protocol (2)

The Border Gateway Protocol (BGP) is the routing protocol that sets up paths between Autonomous Systems (ASes).

Forwarding: Node use **single** outgoing link for all traffic to destination. **Rankings:** Static and local; usually based on economic relationships.

Today's Security Goal: Matching the Data Plane

Goal: BGP announcements match AS-paths packets take in data plane.

This way, ASes can use BGP messages:

- 1. To avoid ASes perceived as adversarial / unreliable
- 2. To choose high performance paths
- 3. As part of an accountability framework

Secure Data-Plane Protocols:

- Packet Passports [LYWA-06] Packet Obituaries [AMISS-07]
 Truth in advertising [WBAGS-07] Failure Localization [BGX-08]
- X

Secure AS-path tracing protocols incur overheads proportional to the amount of traffic sent in the data plane.

Routing Protocol Approaches to Match Data Plane

Routing Protocols + Game Theory:

• [NR-01] [FPS-01] [FPSS-05] [PS-04] [FKMS-05]

Corollary: If _______rational ASes have no incentive to unilaterally deviate from announcing paths that match data plane.

Quick background: Public-key Signatures

Anyone who knows Alice's public key can verify that yreceived the correct message from Alice.

This looks great, what's the catch? We need an infrastructure to certify the public keys.

Secure BGP (1)

If AS a announced path abP then b announced bP to a

Secure BGP (2)

If AS a announced path abP then b announced bP to a

Modeling Utility

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

Utility of attracted incoming traffic

In all prior work: Utility is determined by the ranking function

Modeling Utility with Traffic Attraction

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

Utility of attracted incoming traffic

Traffic-volume attractions:

- AS only cares who originates traffic
- Models incentive to snoop / tamper
- ... or increase incoming traffic volumes

Customer attractions:

- AS wants to attract traffic from customers via direct link.
- Models bilateral economic relationships.

Generic attractions:

• AS wants to attract traffic from specific ASes via a specific path

Result: Shortest-Path Policy is not Sufficient! (0)

Result: Shortest-Path Policy is not Sufficient! (1)

Result: Shortest-Path Policy is not Sufficient! (2)

Result: Shortest-Path Policy is not Sufficient! (3)

Secure BGP (1a)

If a announced path abP then b announced bP to a

Assumes a public-key infrastructure that, today, we don't have.

Secure BGP (1b)

If a announced path abP then b announced bP to a

Secure BGP (2)

If a announced path abP then b announced bP to a

Modeling Utility (1)

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

Utility of attracted incoming traffic

In all prior work: Utility is determined by the ranking function

Modeling Utility (2)

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

Utility of attracted incoming traffic

In all prior work: Utility is determined by the ranking function

Modeling Utility with Traffic Attraction (1)

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

+

Utility of attracted incoming traffic

Traffic-volume attractions:

- AS only cares who originates traffic
- Models incentive to snoop / tamper
- ... or increase incoming traffic volumes

Modeling Utility with Traffic Attraction (2)

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

+

Utility of attracted incoming traffic

Traffic-volume attractions:

- AS only cares who originates traffic
- Models incentive to snoop / tamper
- ... or increase incoming traffic volumes

Customer attractions:

- AS wants to attract traffic from customers via direct link.
- Models bilateral economic relationships.

Modeling Utility with Traffic Attraction (3)

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

+

Utility of attracted incoming traffic

Traffic-volume attractions:

- AS only cares who originates traffic
- Models incentive to snoop / tamper
- ... or increase incoming traffic volumes

Customer attractions:

- AS wants to attract traffic from customers via direct link.
- Models bilateral economic relationships.

Generic attractions:

• AS wants to attract traffic from specific ASes via a specific path

Result: Secure BGP is not Sufficient! (2)

With **traffic-volume** OR **customer** attractions, there can be an incentive to announce mismatched paths, **even with Secure BGP**.

Observation: Princeton does not use a shortest-path policy. 29/23

Result: Shortest-Path Policy is not Sufficient! (1)

Result: Shortest-Path Policy is not Sufficient! (2)

Result: Shortest-Path Policy is not Sufficient! (3)

Result: Shortest-Path Policy is not Sufficient! (4)

Theorem: Traffic Volume Attractions

When all attractions are **traffic volume**, nodes have no **incentive** to **unilaterally** announce mismatched paths if all nodes in the network use either:

 $\mathbf{\mathbf{\bigcirc}}$

- 1. Secure BGP, and
- 2. Policy consistency;

OR

1. Next-hop policies;

and there is no dispute wheel in the network and there is consistent export (in the first case) or all-ornothing export (in the second case).

What about Customer Attractions? (1)

Are these sufficient if we have customer attractions?

- 1. Secure BGP, and
- 2. Policy consistency;

Customer attractions: Attract customers via direct link.

Customer Traffic Attraction (1a)

With **customer** attractions, there can be an incentive to announce false paths, **even if all nodes use next-hop policy.**

Customer Traffic Attraction (1b)

With **customer** attractions, there can be an incentive to announce false paths, **even if all nodes use next-hop policy.**

Customer Traffic Attraction (2)

With **customer** attractions, there can be an incentive to announce false paths, **even if all nodes use next-hop policy.**

Customer Attractions: Introducing Loop Verification

With **customer** attractions, there can be an incentive to announce false paths, **even if all nodes use next-hop policy.**

Customer Attractions: Introducing Loop Verification

With **customer** attractions, there can be an incentive to announce false paths, **even if all nodes use next-hop policy.**

Loop Verification:

If c receives announcement QcR but c did not announce path R then the lying node on path Q is punished with zero utility. Models "fear of getting caught'. Also implied by Secure BGP.

Somewhat More Formally ...

With **generic traffic attraction**, there exists an honest strategy that obtains the best possible stable outcome for each node (*i.e.* that each node has no incentive to **unilaterally** mismatch paths), if every node uses

- 1. Loop verification, and
- 2. Next-hop policies, and
- 3. All or nothing export.

and there is no dispute wheel in the network

Removing any condition gives a counterexample

The exact statement of this result is in the paper

All-or-Nothing Export

For each neighbor, either export all paths or export none. Path-based egress filtering is not allowed! (Incompatible with practice.)

AT&T makes money because it delivers traffic to a customer. AT&T loses money because it transits traffic between its peers.

What conditions ensure BGP messages match data-plane paths?

- Secure BGP is not sufficient
- ... if it is rational for ASes to want to attract traffic.
- Generally, we need **next-hop policy** as well as
- ... other conditions (no dispute wheel, no egress filtering).

Also, notice how strongly results depend on utility model.

What should we do?

- Use expensive data-plane protocols?
- Forget about matching BGP messages to data plane?
- Allow ASes to send traffic on more than one outgoing link?

Thanks!

Full version with all proofs and counterexamples available: www.princeton.edu/~goldbe/

Formal model

Stability: No Dispute Wheel

A dispute wheel is a cycle of nodes with rankings that prefer paths through neighbours over direct paths

3

32d

3d

Disagree: 2 stable outcomes

Bad Gadget: no stable outcomes

13d

1d

d

21d

2d

Without traffic attraction [GSW01]: The network has a unique stable outcome when there is no **dispute wheel** in the rankings.

The Gao-Rexford Conditions

Attractions: Only want to attract traffic from your customers.