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ABSTRACT
We presentpath splicing, a primitive that constructs net-
work paths from multiple independent routing processes that
run over a single network topology. The routing processes
compute distinct routing trees using randomly perturbed link
weights. A few additional bits in packet headers give end
systems access to a large number of paths. By changing
these bits, nodes can redirect traffic without detailed knowl-
edge of network paths. Assembling paths by “splicing”
segments can yield up to an exponential improvement in
path diversity for only a linear increase in storage and mes-
sage complexity. We present randomized approaches for
slice construction and failure recovery that achieve near-
optimal performance and are extremely simple to config-
ure. Our evaluation of path splicing on realistic ISP topolo-
gies demonstrates a dramatic increase in reliability that ap-
proaches thebest possibleusing only a small number of
slices and for only a small increase in latency.

1. Introduction
The Internet should be highly available. It should be re-

liable and robust to failures and changes in network condi-
tions. Unfortunately, an Internet that is “always on” in the
face of fiber cuts, power outages, blackouts, equipment fail-
ure, and operator error remains elusive [5, 12]. In the past,
scalability requirements have overshadowed concerns about
availability and robustness. As the Internet is increasingly
becoming a medium for interactive applications that demand
high-availability, users and operators alike are feeling the
repercussions of this design choice. Designing routing pro-
tocols that scale well and recover quickly from failures has
proven difficult. In this paper, we present a new primitive
that demonstrates a surprising result: it is possible to achieve
scalabilityandhigh availability; encouragingly, this can be
achieved by composing existing routing protocols.

Today’s routing protocols provide reachability while scal-
ing to a large number of destinations. Scalability has come
at the expense of availability; these protocols do not make
use of the available connectivity in the underlying network.
Internet routing protocols are single-path and destination-
based [14, 15, 19]. In these scenarios, even a single link fail-
ure can disrupt a large amount of traffic or even disconnect
end systems entirely. Even many overlay networks measure
path characteristics (e.g., latency, loss, or both) and select a
singlebestoverlay path over which to route traffic [2, 10].

Exploiting thepath diversitythat exists in the underlying
network could make the network more reliable and also im-
prove capacity. A routing protocol that achieves better path
diversity by exploitingmultiplepaths through the network is
more robust to failures. Unfortunately, scalably providing a
large amount of path diversity has proven difficult. Schemes
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Figure 1: With two disjoint paths, any two failures, one on each path,
disconnectss from t. With splicing, the failures must induce a graph
cut to create a disconnection.

for improving path diversity must scalably (1)disseminate
information about multiple disjoint paths; and (2) provide
end systems a mechanism toselectpaths along which to for-
ward traffic. In this paper, we show how multi-path routing
can not only be scalable, but also how it can achievereliabil-
ity that approaches that of the underlying graphitself. We
also show how end hosts can scalably select these paths.

This paper presentspath splicing, a primitive that com-
poses route computations from existing routing protocols to
(1) achieve an exponential improvement in path diversity for
only a linear increase in routing complexity (in terms of rout-
ing table state, messages, etc.) and (2) provides lightweight
mechanisms to allow end hosts to “deflect” traffic around
faulty network elements. In path splicing, nodes run several
instances of a routing protocol, but with different parameter
settings (e.g., multiple instances of shortest paths routing,
each with different link weights). Traffic can be forwarded
alongany combination of path segmentsfrom each routing
tree, and traffic can switch trees at any node.

Figure 1 shows a simple example that demonstrates the
power of splicing; this simple network has two disjoint
paths froms to t. Any two link failures with one on each
path would disconnects from t. When these two paths are
spliced, disconnectings from t requires that both links in
somecut fail, which is a far less likely event. Path splicing
thus potentially offers up to an exponential improvement in
the number of available paths between each node pair.

Path splicing dramatically increases path diversity with
minimal increase in path latency. Our preliminary evalua-
tion shows that path splicing (1) achieves path diversity that
approaches that of the underlying network; and (2) allows
end systems and intermediate nodes to quickly recover from
failures, even when used in conjunction with the most naı̈ve
recovery mechanisms. Path splicing is simple, scalable, and
stable, requiring only static per-link configuration, and it
does not require implementing any new routing protocol.

Although this paper uses path splicing to improve intrado-
main failure recovery, path splicing is a general technique
for composing multiple routing protocol instances to in-
crease the number of paths available to end systems. Thus,
path splicing can apply both to other routing protocols (e.g.,
BGP [19]) and to other settings and applications that can
exploit access to multiple paths (e.g., making better use of
network capacity by simultaneously using many paths).
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2. Design Goals
To provide high availability, a routing protocol must dis-

cover and disseminate information about adiverseset of
paths between each pair of end systems. High diversity
improves the likelihood that these hosts remain connected
when links or nodes experience faults (e.g., failures, con-
gestion, packet loss). Second, the routing protocol must fa-
cilitate fastrecovery; that is, when a failure occurs it must
enable end systems to quickly discover at least one working
path among the diverse set of available paths. This section
discusses both diversity and recovery.

High Diversity. The routing protocol must expose a diverse
set of paths between end hosts to ensure that each pair of
nodes remains connected when underlying links in the graph
experience faults. Many attempts to improve path diversity
have operated without a clear definition of path diversity,
although they have typically implicitly assumed an “oper-
ational” definition of masking path failures along paths be-
tween endpoints. We now formalize this notion.

Definition 2.1 (Reliability) Given a graphG = (V, E) and
a probability of failurep(e) on every edgee ∈ E, the reli-
ability of the graph is the probability that upon failing each
edgee independently with probabilityp(e), the graph re-
mains connected.

Reliability reflects the probability that the graph becomes
disconnected, given that links fail with certain probabilities.
We define a related notion of a reliability curve.

Definition 2.2 (Reliability curve) For a given graphG,
and any0 ≤ p ≤ 1, let R(p) denote the reliability (prob-
ability that the graph stays connected) when all edges fail
independently with probabilityp. The reliability curve is the
plot y = R(x) wherex ranges from0 to 1.

We are chiefly interested in a routing protocol’s ability to
best utilize the path diversity that exists in the underlying
graph, i.e., to minimize thereliability shortfall. Although
end systems cannot achieve reliability that is greater thanthe
underlying graph, the routing system should come as close
as possible to achieving the reliability of the underlying net-
work. Most routing protocols have a high reliability short-
fall; in contrast, we show in Section 4 (both experimentally
and theoretically) that simple path splicing configurations
approach near-optimal reliability.

Fast Recovery.As part of achieving high reliability, the pro-
tocol must provide a way for end systems toquickly discover
working backup paths when the primary path or paths fail.
Thus, another important metric is therecovery time: how
long it takes for end hosts to discover alternate working paths
after a failure occurs. Recovery can be performed either by
end systems or by intermediate nodes (e.g., routers); in our
evaluation, we investigate both recovery scenarios and show
that path splicing performs well in both cases.

Small Stretch.For any pair of nodes(s, t), we also consider
the ratio of the latency given by path splicing to the latency
of the shortest path. We call this ratio thepath stretchfor

the pair(s, t). We aim to keep this ratio small for every pair
of nodes. This goal contrasts with previous work on overlay
routing, path diversity, and traffic engineering algorithms [2,
7, 22], which do not consider stretch.

3. Path Splicing
This section describespath splicing. We first give an

overview of the intuition behind path splicing and present a
simple example. Figure 2 illustrates path splicing. The basic
idea is simple: compute multiple shortest paths trees based
on perturbations of the link weights in the original graph,
and overlay these trees to create a graph over which traffic
can be forwarded.

3.1 Splicing Control Plane
The path splicing control plane computes multiple rout-

ing trees based on perturbations of the underlying network
topology and writes these trees to separate forwarding tables.
The control plane runs multiple routing protocol instances,
each with slightly different link weights.

3.1.1 Link-weight perturbations
To allow endpoints to discover paths other than shortest

paths between any two nodes in the network, path splicing
creates routing trees that are based onrandom perturbations.
The perturbed link weights are based on the original weight
of the link, which ensures that the length of the new short-
est path is not very long compared with the original shortest
path. The perturbed link weightL′(i, j) is defined as:

L′(i, j) = L(i, j) + Weight(a, b, i, j) · Random(0, L(i, j))

whereL(i, j) is the original weight of the link between node
i and nodej, Weight(a, b, i, j) is a function of some proper-
ties of nodesi andj (e.g., the degrees of the nodes),a and
b are constants, and Random(0, L(i, j)) is a random number
chosen in the range of 0 toL(i, j).

The nature of the perturbation can be changed by using
different Weight() and Random() functions. In this work,
we explored several Weight() functions; although many pos-
sibilities exist, we found the following “degree-based” per-
turbation to work well in practice:

Degree-based perturbations The function
Weight(a, b, i, j) is a linear function of the sum of
the degrees ofi andj, i.e.

∀i,jWeight(a, b, i, j) = fab(degree(i) + degree(j))

wherefab is a linear function indegree(i) + degree(j)
ranging from a to b. In later sections we denote
Weight(a, b, i, j) as Weight(a, b). The intuition behind
these perturbations is that links connected to nodes with a
high degree may be perturbed more than links connected to
nodes with smaller degree, which reduces the likelihood of
many shortest paths using the same link.

3.1.2 Multiple routing protocol instances
Path splicing constructs multiple shortest paths trees by

running multiple routing protocol instances on the same un-
derlying topology. Different instances of the routing proto-
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Figure 2: Each node runs multiple routing protocol instances, each of
which computes a shortest path tree. These trees are writteninto k
(k = 2) forwarding tables, where eachdst has a unique next hop node.
The example shows two shortest paths trees rooted atA.

col compute routing trees to each destination; link-weight
perturbations ensure that these routing trees are sufficiently
non-overlapping. Each of these routing processes writes into
a different forwarding table, as shown in Figure 2.1 Our cur-
rent design splices paths using routing trees that are com-
puted from different configurations of the same protocol,
but in theory each routing process could also run a different
protocol. Cisco routers already supports for multi-topology
routing [4], according to the recently standardized multiple
router configuration functionality [17]. Multi-topology rout-
ing provides much of the control-plane function that would
be needed to support path splicing in practice.

3.2 Splicing Data Plane
This section describes the mechanism by which slices are

“spliced” together to form an end-to-end path. A sequence
of bits in the packet header (placed between the network and
transport layer headers)—forwarding bits—signal to routers
which forwarding table should be used to forward traffic.
Other work has proposed similar mechanisms [1, 22]. An
attractive deployment scenario would involve end hosts in-
serting this header and changing bits; this scenario is ap-
pealing since end hosts are often the first to detect a poorly
performing path. Alternatively, middleboxes, border routers,
or overlay nodes could insert and manipulate these bits.

Two design features of the forwarding bits make path
splicing both scalable and incrementally deployable. First,
the bits areopaqueand have no explicit semantics; end sys-
tems can change the path simply by changing the forward-
ing bits without needing details about the (very large num-
ber of) alternate paths. Second, routers that do not support
path splicing simply forward data packets as they normally
would, based on the destination IP address.

The forwarding bits need not provide explicit control over
the sequence of hops in the forwarding path. The key prop-
erty is that changing the bits should, with high probability,
cause traffic to be diverted along a different path to the des-
tination. Many encoding schemes have this property; a sim-

1An alternative to running separate processes would be for each node to
compute the perturbed link weights in each slice based on a common pseu-
dorandom function.

Algorithm 1 Algorithm for forwarding packets
k ⇐ number of slices
dst ⇐ destination IP address
src ⇐ source IP address
if fwdbits > 0 then

slice⇐ fwdbits & (2k − 1)
else

slice⇐ Hash(src, dst)
end if
fwdbits >> lg(k)
nexthop⇐ Lookup(dst, slice)

forward packet to next-hop

ple encoding scheme includeslg(k) bits for each network
hop; each set of bits indicates which ofk forwarding tables
should be used to forward the traffic at that hop. As shown
in Algorithm 1, each node along the path (1) reads the right-
mostlg(k) bits from the splicing header to determine which
of k forwarding tables to use for forwarding the packet; and
(2) shifts the bitstream right bylg(k) bits to allow subse-
quent hops to perform the same operation. We describe in
Section 5 how, for certain recovery schemes, this header can
be significantly compressed.

Various strategies exist for recovery (i.e., changing the
forwarding bits); we show in Section 4 that even the most
naı̈ve scheme, randomly generating a new set of bits en-
ables fast recovery. End systems could detect poorly per-
forming paths resulting from many causes (e.g., queueing,
packet loss, etc.), while intermediate nodes may sometimes
detect failures more quickly and could also initiate a switch
to an alternate slice. Section 4 evaluates both approaches.

4. Preliminary Evaluation
This section presents the results from our preliminary

evaluation. Table 1 summarizes the main results, which
demonstrate, first, that splicing attains reliability thatap-
proaches that of the underlying graph; and second, that even
simple schemes for selecting forwarding bits can provide
very fast recovery. The rest of the section describes our ex-
perimental setup and each of these results in detail.

4.1 Experimental Setup and Method
To evaluate the reliability of path splicing under a variety

of link-failure scenarios, we implemented a simulator that
takes as input a “base” network topology (with link weights)
and outputs the different shortest paths trees for that net-
work using both uniform and degree-based perturbations. To
simulate link failures, we remove each edge from the un-
derlying graph with a fixed failure probability. We then de-
termine whether a spliced path exists between each source-
destination pairs in the resulting graph.

We used two “base” network topologies: (1) the GEANT
backbone topology [8], which has 23 nodes and 37 links
(typical for a medium-sized ISP); and (2) the Sprint back-
bone network topology inferred from Rocketfuel, which has
52 nodes and 84 links [20]. Due to space constraints, we
present the results from the Sprint topology only.

4.2 Reliability Approaches Optimal
Path splicing increases the paths available between each

pair of endpoints by running multiple versions of the routing
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Result Location
Reliability approaches optimal: The reliability achieved
with random perturbations for≤ 10 slices approaches the op-
timal that can be achieved byanyrouting algorithm.

§ 4.2,
Fig. 3

Recovery is fast:An end host or intermediate node can typi-
cally recover in slightly more than two trials when recovering
by selecting forwarding bits at random.

§ 4.3,
Figs. 4, 5

Loops are rare: Using two slices, loops occur in only about
1% of all cases for path recovery. Simple modifications can
reduce the likelihood of loops or eliminate them entirely.

§ 4.4

Table 1: Summary of preliminary results.
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Figure 3: Reliability: Sprint topology using slices based on degree-
based perturbations of link weights in the original topology.

protocol in parallel (specifically, without running a protocol
that must compute an exponential number of paths). As the
number of slices increases, path diversity grows exponen-
tially, but the complexity of path splicing grows linearly (in
terms of required routing state, convergence time, and the
number of routing messages that are exchanged).

We computed thereliability curves(Definition 2.2, Sec-
tion 2) for routing graphs generated using path splicing and
compared this characteristic both to “conventional” shortest
paths routing and to that of the original underlying graph,
whose reliability reflects thebest possiblereliability that
could be achieved by any routing protocol. We used the
simulator to generate “spliced” graphs by taking the union
of k link-perturbed shortest-path trees. The resulting graph
is equivalent to what would result from writingk such trees
into k forwarding tables. Each trial selectsk such trees at
random to generate a spliced graph. We plot the reliability
curve for each resulting graph for various values ofk and
various perturbation strategies. The lower the fraction of
pairs disconnected for a given failure probability, the more
reliable the resulting graph.

To examine the effects of failure on connectivity, we re-
move each edge from the graph independently with a prob-
ability p. We start withk = 1, evaluate the reliability for
the resulting graph, increasek to 2 (i.e., add edges to the
graph by taking the union of the two graphs) and evaluate
the reliability of the resulting graph by failing thesame set
of linksas we did for smaller values ofk (simulating the ef-
fects of a link failure in the underlying network). We fail
the same set of links for different values ofk, so as to com-
pare how adding slices improves reliability. We perform this
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Figure 4: Recovery usingend-system recovery and Sprint topology.

 0

 0.1

 0.2

 0.3

 0.4

 0  0.02  0.04  0.06  0.08  0.1

F
ra

ct
io

n 
of

 s
ou

rc
e-

de
st

in
at

io
n 

pa
irs

 
di

sc
on

ne
ct

ed

Probability of link failure (p)

k = 1 (no splicing)
k = 3 (recovery)
k = 3 (reliability)
k = 5 (recovery)
k = 5 (reliability)

Figure 5: Recovery usingnetwork-based recovery and Sprint topology.

process1, 000 times and compute the average reliability for
each value ofk and failure probability.

Figure 3 shows the reliability curves for Sprint using
degree-based perturbations withWeight(0, 3). Adding just
one slice (i.e., increasingk to 2) significantly improves reli-
ability; adding more slices improves reliability further.Fig-
ure 3 demonstrates that even with just a few slices (i.e., 5)
and a very simple scheme for generating alternate graphs
(i.e., link-weight perturbations),the reliability of path splic-
ing approaches the reliability of the original underlying net-
work!

Our analysis in Appendix A shows that the number of
slices required to achieve near-optimal connectivity with
bounded stretch scales well with the size of the graph.
Specifically, Theorem A.1 shows that the number of slices
required to achieve connectivity that is close to that of the
underlying graph scales aslog n, wheren is the number of
nodes in the graph.

4.3 Recovery is Fast
Routing protocols often react slowly (or not at all) to fail-

ures along end-to-end paths. Path splicing allows end hosts
to signal to nodes along the network path that traffic should
be forwarded along a different set of path segments. In this
section, we demonstrate how the end-user and/or the net-
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work can quickly recover from failures by selecting spliced
paths in the network at random.

We evaluate two approaches to recovery:end-system re-
covery is network-agnostic and relies on the end system
(e.g., user, proxy, edge router) to initiate recovery;network-
based recoveryassumes that the node in the network can de-
tect a failure on an incident link and initiate recovery by di-
verting traffic to a different slice. We use a simulation setup
similar to the one described for the reliability experimentto
generate a spliced graph with failed links. For all discon-
nected source-destination pairs, we evaluate the effective-
ness of these schemes for recovering from failure. If splicing
can recover the path in five or fewer trials, we consider the
path recoverable, particularly since these trials could berun
in parallel.

End-system recovery.Figure 4 shows the recovery where
the end system controls the specific spliced path to the des-
tination. In our experiments, we use a header that allows 20
hops to be spliced. For a failed path, the new shim header
(i.e., the forwarding bits) is constructed as follows: A coin
is tossed for every hop in the shim header; if the result is a
head, a different slice is selected for that hop (i.e., at every
hop we switch slices with 0.5 probability). We check to see
if a failed path can be recovered in fewer than 5 trials. The
average number of trials in any case where splicing could re-
cover from the failure was slightly more than 2. Paths were
on average 1.3 times longer in delay compared to the short-
est path in the “base” topology; the resulting paths typically
use about 50% more hops compared to the original shortest
path. In any particular slice, 99% of all paths in each tree
have stretch of less than 2.6.

Network-based recovery. Figure 5 shows results for
network-based recovery: When a routerx receives pack-
ets destined tod with next-hopy and discovers that link
(x, y) has failed, it finds in its forwarding table an alter-
nate slice with a connected next-hop ford (if one exists).
If a path between two endpoints is discovered using this re-
covery scheme we consider the path recoverable. All paths
between connected endpoints need not be recoverable since
the packet could end up in a dead-end from where there is
no connected next-hop to reach the destination, due to the
specific slices selected by the routers. The average stretch
for this recovery scheme was 1.33 while there were 55%
more hops in the recovered paths; these numbers are slightly
higher compared to the end-system recovery scheme.

Our evaluation shows that path splicing may be practical:
it provides fast access to a large number of diverse paths.
More sophisticated recovery schemes that use some infor-
mation about network failures, etc. should perform even bet-
ter compared to the two simple schemes we have studied.

4.4 Forwarding Loops are Rare
Because traffic is no longer forwarded along a single rout-

ing tree, the potential for loops does exist. Forwarding loops
are problematic because they increase the total length of the
end-to-end path, and they also unnecessarily use network
capacity. Fortunately, certain recovery strategies can avoid
forwarding loops entirely. For example, in the splicing data-

plane design we presented in Section 3.2 the splicing header
will eventually run out of forwarding bits as each node shifts
lg(k) bits from the header; at this point, the traffic will re-
main in its current tree en route to the destination. Addi-
tionally, paths that never switch back to a previously used
slice would never contain persistent forwarding loops of any
length; therefore, a recovery scheme that generates the for-
warding bits so that the end-to-end path never revisits a slice
would be guaranteed to not have persistent loops. Another
useful strategy to limit forwarding loops is to restrict the
number of switches between slices that a packet can make
to a small number.

Although the potential for loops does exist in the general
case, we note that these loops are still unlikely. First, exer-
cising a forwarding loop requires switching between slices
repeatedlyand in exactly the right order to cause traffic to
be forwarded along a cycle in the directed graph. The likeli-
hood that the forwarding bits in the header will be chosen to
exercise the same loop more than once decreases exponen-
tially with each iteration of the loop.

In our experiments we observed that loops of more than
two hops were extremely rare. Theorem B.1 in Appendix B
proves this result. Two-hop loops occurred more frequently
(about one per100 trials fork = 2, and about one in ten trials
for higher values of k). Using any of the schemes discussed
above could eliminate loops entirely, at the cost of restricting
the paths available for recovery. We are investigating the
extent of these loops (e.g., how many times packets traverse
these loops in practice, the effects of explicitly preventing
loops on reliability and recovery).

5. Discussion
In this section, we discuss several open issues and areas

for future study. We first discuss alternative mechanisms
for creating slices and other possible recovery mechanisms.
Then, we discuss issues and various open questions related
to the effect splicing may have on traffic. Finally, we discuss
various deployment scenarios and applications of splicing.
We intend to study these issues in the context of experiments
on a network test-bed, as well as to evaluate the reliability
and recovery numbers on other real ISP topologies.

Alternate slicing mechanisms. Generating slices by ran-
domly perturbing link weights is appealing because of its
simplicity: unlike other schemes [3, 9, 11, 16], splicing re-
quires no explicit computation of backup paths, no complex
configuration, no complex offline computation, and no fre-
quent configuration tuning. Still, we expect that path splic-
ing might perform even better if each slice were configured
with some consideration of the edges in the underlying graph
that were already covered by other slices. We intend to ex-
plore how other approaches to generating backup trees (e.g.,
multi-router configuration, multi-topology routing) might be
used to achieve more reliability with fewer slices.

Alternate recovery mechanisms. Our evaluation showed
that even simple recovery mechanisms allow end systems
and intermediate nodes to quickly find alternate working
paths, but other approaches (e.g., flipping bits to change the
first hops in the path with higher probability) might result
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in even faster recovery. We are also investigating the use
of alternate encoding schemes. One possibility is that the
forwarding bits are simply reduced to a single number: any
hop that saw a non-zero number in the splicing header could
select an alternate path (perhaps deterministically, based on
the number) and decrement the number.

Interactions with traffic engineering. Path splicing gives
end systems control over the paths that traffic takes through
the network, which may induce unpredictability and instabil-
ity in offered traffic loads seen by ISPs. This unpredictability
may make traffic engineering more difficult if the arrival pat-
terns of traffic are continually varying. Still, we expect that
these interactions to be manageable, if splicing can reduce
the need for automatic tuning of link weights. Path splic-
ing spreads traffic across the network even in the absence of
failure if sources select their initial set of slices at random
(as shown in Algorithm 1). This “automatic” load balanc-
ing might mitigate the need for various tuning that is neces-
sary with today’s routing protocols [6, 7], which can be po-
tentially sensitive to small changes in the network topology
(e.g., link or node failures). We are currently comparing the
traffic balance that path splicing achieves versus that which
conventional link-weight optimization achieves, both in the
case of failures and in steady state.

Selfish-routing effects. Path splicing gives end systems
some control over the paths that traffic takes, which intro-
duces the possibility that all end systems will react the same
way upon seeing a faulty network path. If all end systems
choose the same backup path when a link or node fails, the
resulting traffic shifts could introduce congestion on certain
links. Because each end system selects a new sequence of
forwarding bits at random, we expect that traffic will dis-
perse evenly across the network topology upon failure re-
covery; still, examining the effects of failures on traffic dy-
namics deserves further study.

Extensions to interdomain routing.Path splicing may also
scalably provide access to multipleinterdomainpaths. BGP-
speaking routers already have multiple routes to a destina-
tion in their routing table. The BGP decision process could
be modified to selectk best routes to a destination and install
them in the forwarding tables. These alternate routes can
be accessed with the forwarding bits. Furthermore, the for-
warding bits could not only be used for selecting an alternate
interdomain route but also for selecting the egress router in
the network (our previous work describes this mechanism in
more detail [13]). In contrast to existing multi-path routing
architectures (e.g., MIRO [21]), a spliced BGP would pro-
vide end systems access to multiple interdomain paths with-
out requiring any additional communication among BGP
routers to forward traffic along multiple interdomain paths.

Other applications and deployment scenarios.Path splic-
ing is a general technique that applies to routing at other lay-
ers (and for other purposes). End hosts could set splicing bits
in packets to simultaneously use disjoint paths, as opposed
to simply changing splicing bits in reaction to failures, thus
allowing hosts that send traffic between endpoints to achieve
throughput that approaches the capacity of the underlying

graph. Second, splicing could be applied to overlay rout-
ing. RON [2] uses a pairwise probing strategy to determine
end-to-end paths that have low overall end-to-end latency or
loss rates and then composes overlay paths based on a sin-
gle link-state routing protocol that uses a single metric (e.g.,
loss, latency, throughput). Applying path splicing to overlay
routes may improve fault tolerance and capacity; it may also
mitigate the oscillations that arise when independent over-
lays react to the observed conditions and induce overload or
poor performance. [18]. It might also be used to combine
overlay networks that use independent metrics (e.g., splicing
RON [2] with SOSR [10] ).

6. Summary and Research Agenda
This paper has presentedpath splicing, a new primitive

that constructs network paths from multiple independent
routing protocol instances that run over a single network
topology. Path splicing instantiates multiple routing proto-
col instances, each with its own random perturbation of link
weights, to create an exponential increase in path diversity
for only a linear increase in state and message complexity.
Splicing is a general mechanism for composing routing pro-
tocols and can be applied toanyrouting protocol (e.g., over-
lay routing). Path splicing is simple, scalable, and stable.
It requires only static, per-link configuration, and it can be
implemented by composing existing routing protocols.

Our experiments showed that splicing can be practical, but
much work remains to determine the performance and be-
havior of path splicing in practice. We are also exploring
alternate schemes for slice generation and recovery and ex-
tending the design to interdomain routing. We are build-
ing a prototype implementation to evaluate the performance
of path splicing in a realistic setting. This prototype im-
plementation and deployment study will improve our un-
derstanding of splicing’s dynamic behavior and interactions
with dynamic routing protocols. In particular, an important
open question concerns the interactions of path splicing with
the convergence of the routing protocol, which could affect
forwarding-table entries at the same time as path splicing is
re-routing traffic. In fact, we believe that path splicing may
provide enough reliability from link and node failures to per-
mit dynamic routing to react much more slowly to failures,
and, in some settings, may even eliminate the need for dy-
namic routing altogether.
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APPENDIX

A. Reliability Analysis
Fix a maximum allowable stretchD. Then, for each pair of verticess, t,
we consider the subgraphG(D, s, t) induced by paths of length at most
D from s to t. Let χG(D, s, t) be the connectivity of this graph and
χG(D) = mins,t χG(D, s, t). We show that the connectivity of the paths
used by path splicing approachesχ(D) (i.e., that of the underlying graph).

Theorem A.1 Let H denote the union ofk shortest path trees to a des-
tination t, each obtained from a graphG by independent random pertur-
bations of the link weights uniformly in the range(L, 2DkL). Then for
any k > c0 log n, with high probability, the connectivity ofH is at least
c1χG(D) wherec0, c1 are universal constants andn is the number of
nodes in the graph.

We only give the idea of the proof here. We argue that every cutof H has
Ω(k) edges. This uses two ideas: (1) there are at mostn(n−1)/2 mincuts
in an undirected graph withn vertices and at most2ln(n − 1)/2 cuts of
with at mostl times the minimum number of edges (2) An cutC with |C|
edges has an edge subset set of supportΩ(|C|) with the property that each
edge is chosen roughly uniformly in a shortest path tree withperturbed
weights. Combining (1) and (2) along with a Chernoff bound gives the
claimed result.

B. Stretch Analysis
In this section, we show that stretch is bounded and that, as aconsequence,
long forwarding loops are unlikely.

Theorem B.1 Assume the perturbations of a linki with original weightLi

are uniform in the range[−cLi, cLi]. Consider a packet traveling from
sources to destinationt that has madem hops of perturbed lengthsL′ =
(L′

1
, . . . , L′

m) on a single slice and reached a nodeu. LetP be a shortest
path froms to t. Then, for anyr > 1,

P

„

(1 − c)d(u, t) ≤ ||P ||1 − ||L′||1 +
rc√
3
||P ||2

«

≥ 1 − 1

r2
.

PROOF. We begin with a simple probabilistic bound on the perturbedlength
of any fixed path. LetXi be the perturbed length of a traversed link with
original lengthLi. ThenE(Xi) = Li. Further,

Var(Xi) = Var(Xi − Li))
2

= E((Xi − Li)
2) − E(Xi − Li)

2

= E(Y 2

i )

whereYi is uniform in the interval[−cLi, cLi]. Thus,

Var(Xi) =

R cLi

−cLi
y2 dy

2cLi

=
c2

3
L2

i .

Let X =
Pm

i=1
Xi. Using Chebychev’s inequality, we have

P

„

|X − L| ≥ r
c√
3
|L|2

«

<
1

r2
.

Let d′(., .) denote the shortest path distances with perturbed weights in the
current slice. LetP be a shortest path betweens and t with the original
weights.

d(u, t) ≤ 1

1 − c
d′(u, t)

=
1

1 − c
(d′(s, t) − ||L||1)

≤ 1

1 − c
(d(s, t) +

rc√
3
||Pst||2 − ||L||1)

where the equality follows from the property of a shortest path and the in-
equality holds with high probability using the above analysis.
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