
Towards Internet-wide Multipath Routing
Jiayue He and Jennifer Rexford

Princeton University, USA
Email: {jhe, jrex}@princeton.edu

Abstract— The Internet would be more efficient and robust if
routers could flexibly divide traffic over multiple paths. Of ten,
having one or two extra paths is enough for significant gains
in security, performance, and reliability. However, support for
Internet-wide multipath routing faces two significant barr iers.
First, multipath routing could impose significant computational
and storage overheads in a network the size of the Internet.
Second, the independent networks that comprise the Internet will
not relinquish control over the flow of traffic without approp riate
incentives. In this paper, we survey flexible multipath routing
techniques which are both scalable and incentive compatible.
Techniques covered include: multihoming, tagging, tunneling,
and extensions to existing Internet routing protocols.

Keywords: Internet, multipath routing, multihoming, tun-
neling, scalability.

I. I NTRODUCTION

Most currently deployed routing protocols select only a
single path for the traffic between each source-destination
pair. In this paper, we explore techniques that allow aflexible
division of traffic over multiple paths. That is, we argue that
an end host or edge network should have access to multiple
paths through the Internet, and direct control over which
traffic traverses each path. Application requirements dictate
the granularity of division,e.g., by IP address blocks (i.e., IP
prefixes), destination host, a Transmission Control Protocol
(TCP) flow, or a single packet.

A. Motivation for Flexible Multipath Routing

Flexible Internet-wide multipath routing would offer many
benefits, including the following:

• Customizing to application performance requirements:
Different applications have different needs. If multiple
paths exist, VoIP and online-gaming traffic can use a
low-delay path, while file-sharing traffic uses a high-
throughput path. In addition, an application can access
more bandwidth by using multiple paths simultaneously.

• Improving end-to-end reliability:If multiple paths exist,
traffic can switch quickly to an alternate path when a link
or router fails. Similarly, if an adversary drops packets
along a path, the traffic could be moved to an alternate
path to circumvent the adversary [1]. This is particularly
useful if disjoint paths are available.

• Avoiding congested paths:When multiple paths are avail-
able, traffic can move to an alternate path to circumvent
congestion. Despite problems with routing oscillation in
the early ARPANET, recent work has shown how to
dynamically split traffic over multiple paths in a stable
fashion [2]. In fact, by just having two paths and flexible

splitting between them, protocols can be easily tuned to
efficiently utilize network resources.

Past work indicates that the Internet’s network-layer topol-
ogy has significant underlying path diversity.1 Each network
is a collection of routers and links under the control of one
entity, such as anInternet Service Provider(ISP) that offers
connectivity to other networks or astub networkthat just
provides connectivity to its own users and services. In this
paper, we explore how to give stub networks greater end-to-
end path diversity. Extra end-to-end paths may arise because
a stub network is connected to multiple ISPs, individual ISPs
have intradomain path diversity, or ISPs connect to each other
in multiple locations. In fact, a measurement study of a large
ISP found that almost 90% of Point-of-Presence (PoP) pairs
have at least four link-disjoint paths between them [4]. Another
study showed that, although Internet traffic traverses a single
path, 30% to 80% of the time, an alternate path with lower
loss or smaller delay exists [3].

B. Challenges: Scalability and Incentives

Unfortunately much of the existing path diversity in today’s
Internet is never exploited. The scalability challenges ofmul-
tipath routing is one of the reasons. Multipath routing would
introduce extra overhead in both thecontrol planeand data
plane of the routers. In the control plane, routers exchange
information and compute the forwarding tables that the data
plane then uses to direct incoming packets to outgoing links.
Multipath routing would increase the overhead in both the
control and data planes:

• Control-plane overhead:First, exchanging the extra
topology or path information required for multipath
routing would consume extra bandwidth and processing
resources. Second, storage overhead at each router would
grow with the number of paths. Third, computing multi-
ple paths would require more computational power.

• Data-plane overhead:Forwarding traffic on different
paths requires the data packets to carry an extra header
or label. In addition, forwarding tables need extra entries
for each destination, thus consuming more memory; in
addition, this data-plane memory is expensive, due to the
need to forward packets at high speed.

The ultimate flexibility would be for sources to see the entire
Internet-wide topology and utilizeanypath to each destination.
This would create a large scaling problem, however, since

1In this paper we focus on the path diversity at the network layer. There
is a large body of research on path diversity at the physical layer which is
important for reliability and security, but the shared risks at the physical layer
are not visible to the IP routing system.



the Internet has more than 25,000 networks and many more
paths. Even if the scalability challenges were surmountable,
accessingall paths would require many (or even all) networks
to cooperate, which may be unrealistic. Instead, it is more
likely for ISPs to allow other networks to select from a
small set of paths, under a specific business agreement. Since
business models in the Internet today arebilateral, multipath
solutions based on cooperation between pairs of networks
are much more likely to succeed than solutions that require
widespread cooperation between many (sometimes competing)
networks. Fortunately, multipath routing solutions that limit
the number of additional paths and the coordination between
different networks are aligned with both goals—scalability
and business incentives. As such, in this paper, we focus on
solutions where stub networks select amongst a small set of
paths provided by a limited number of bilateral agreements,
rather than techniques that require a stub network to compute
and signal a complete, end-to-end path.

This survey focuses on multipath routing schemes with
low overhead and minimal cooperation between networks.
The sections progress from deployed techniques to proposed
solutions that are easily deployable, to techniques that rely
on new business models. We start by reviewing how Internet
routing works today in Section II, with an eye towards the
limitations of the existing routing system. End-to-end multi-
path routing relies on two key capabilities: discovering extra
end-to-end paths and directing packets over them. Section III
covers a range of solutions for flexible forwarding such as
tunneling and tagging, for directing packets to different paths,
while Sections IV and V describe control-plane extensions
that enable networks to learn additional paths. In particular,
Section IV discusses techniques for a single network to achieve
multipath routing, without requiring cooperation from other
networks. The impact of a single network on end-to-end path
performance is limited, however, and more end-to-end paths
would be available if networks cooperated. Section V discusses
techniques which only require cooperation between a pair of
networks. Finally, we conclude in Section VI.

II. I NTERNET ROUTING TODAY

In this section, we introduce the key routing protocols
used in today’s Internet. Routers use the Border Gateway
Protocol (BGP) to exchange reachability information with
neighboring networks. BGP is apath-vectorprotocol, where
routing decisions are made based on local policies. Inside
a network, routers communicate using an Interior Gateway
Protocol (IGP). Most ISPs runlink-stateprotocols that perform
shortest-path routing based on configurable link weights. The
link weights in IGP and the policies in BGP are configured
by human operators to satisfy business objectives.

A. Interdomain: Path-Vector Protocol and Multihoming

Figure 1a represents a network-level topology, where each
cloud is a network and each link represents a physical connec-
tion, as well as the existence of a business relationship between
two networks. In a path-vector protocol, theentire routing
path is exchanged between neighbors. Edge routers in each

network learn multiple paths to reach a particular destination
and store all of them in a routing table. From the list of paths,
a router then applies a set of policies to select asingle active
route. A router optionally advertises the active route to each
neighboring network, depending on the business relationship.
Using a path-vector protocol allows BGP to support flexible
local policies that give each network control over its incoming
and outgoing traffic. For example, a stub network, like network
D in Figure 1a, would not advertise routes learned fromB to
C (and vice versa) becauseD does not wish to carry transit
traffic between the two neighbors.

Today’s BGP has two limitations as a single-path proto-
col. First, since only the active path is advertised, customer
networks are prevented from seeing alternate paths, including
ones they might prefer. Second, by using only the active path,
a network does not have fine-grained control, and can only
balance traffic over multiple paths at the IP address block (i.e.,
prefix) level. Extending BGP to a multipath protocol, however,
requires alignment of economic incentives between networks.
The economic incentives are likely to grow stronger in the
future as the demand for performance and robustness increase,
and customers are willing to pay for value-added Internet ser-
vices. Today, two networks usually have a customer-provider
relationship or a peering relationship. In a peering relationship,
two networks could mutually provide additional paths to each
other without any economic exchange, similar to how they
carry traffic on peering links for free today. In a customer-
provider relationship, the provider could offer additional paths
to its customers as a value-added service.

One such example is multihoming, where a stub network
pays to connect to more than one ISP. The use of multihoming
has seen a dramatic increase in recent years for two main
reasons. First, as more enterprises rely heavily on the Internet
for their business transactions, having a second provider is
important to survive a failure of the other provider. Second,
multihoming can be used to drive down the cost of Internet
access. For example, the multihomed network can use a
cheap ISP for most traffic and an expensive but better ISP
for performance-sensitive traffic. In Figure 1a, networkD

is multihomed to networksB and C. Despite having two
upstream routes, networkD can only balance load between
the two at the prefix level, and only forwards traffic for each
destination on a single path. So, while multi-homing provides
additional paths to stub networks, fine-grained control remains
elusive.

B. Intra-domain: Link-State Protocol

Unlike the interdomain case, each network has full control
of its internal network. In addition, a network typically has
just tens or hundreds of routers, much fewer than the 25,000
networks in the Internet. Inside a single network, each router is
configured with a static integer weight on each of its outgoing
links, as shown in Figure 1b. The routers flood the link weights
throughout the network and compute shortest paths as the sum
of the weights using Dijkstra’s algorithm. Each router usesthis
information to construct a table that drives the forwardingof
each IP packet to the next hop in its path to the destination.

2



Link-state protocols offer several advantages. First, routing is
based only on a single link metric,i.e. link weights. Second,
to reduce message-passing overhead, routers only disseminate
information when the topology changes. Finally, by flooding
the link-weight information, each router has a complete view
of the topology and associated link weights.

On the other hand, even though each router can see the
whole topology, the existing path diversity is under-exploited
[4]. Even when alternative paths have been computed, packets
towards a destination are often forwarded on a single path.
Equal-cost multipathis a commonly deployed technique where
the routers keep track of allshortestpaths, and then evenly
split amongst them. In Figure 1b, we see that routeri has two
shortest paths to reach routerj. In today’s IGPs, the traffic
would be divided evenly between the two paths. Even this
limited version of multipath routing is useful for fast reaction
to failures. In fact, some operators tune the link weights to
create equal-cost multipaths [5].

Multiple shortest paths enable the operator to balance load
and react quickly to failures, but does not enable the operator
customize paths for different applications. An existing option
for operators to customize paths inside their own network
is the Constrained Shortest Path First (CSPF) protocol, an
extension of the shortest-path protocol. The path computed
using CSPF is a shortest path fulfilling a set of constraints.
A constraint could be minimum bandwidth required per link,
end-to-end delay or maximum number of links traversed.
CSPF can be useful for a range of applications,e.g., picking
a low-delay path for a VoIP call, but cannot pick paths based
on dynamic constraints such as packet loss.

III. T OWARDS FLEXIBLE FORWARDING

The most prevalent forwarding mechanism in the Internet
today isdestination-based hop-by-hop forwarding. Each router
forwards a packet to an outgoing link based on the destination
address from the IP packet header and the corresponding
longest-prefix match entry in the forwarding table. For exam-
ple, in Figure 1b, a router will forward a packet destined for
j, independent of where the packet came from. Destination-
based hop-by-hop forwarding leads to small forwarding tables,
but cannot realize flexible forwarding policies. For example,
in Figure 1a, if networkA wanted to reachD via (B, C), but
B wanted to reachD directly, thenA is forced to use path
(A, B, D). Even when the forwarding table contains multiple
next hops for the same destination, common practice would
divide the traffic evenly amongst the multiple paths.

In this section, we describe alternative schemes which for-
ward traffic over multiple paths. This is useful for customizing
paths for different applications. In order to decide which path
should carry a packet, an edge router or end host need to first
classify a packet, and then map the packet to a corresponding
path:

• Packet classification:Packets can be classified based
on the requirements of the application. application may
want low delay, high throughput, or a secure path. The
application could be defined by a prefix, a destination, or
a TCP flow (source and destination addresses and port

numbers). Packets within the same flow are normally
classified in the same way. One option is to mark the
Type of Service (ToS) bits in the IP header, and later
forward the packet using the same bits.

• Mapping packets to paths:The edge routers can measure
(or infer) path properties, to determine which path is
best-suited to each class of traffic. By examining the
packet header, a packet can be mapped to an appropriate
path. Designing a measurement infrastructure to monitor
path performance is challenging. One reason is that
measurements of path performance can be inherently
inaccurate; for example, round-trip time estimation is a
classic challenge. In addition, the inaccuracies can be
even greater in a competitive environment where other
networks may treat probing packets differently than data
packets to make paths look more attractive than they are.

Both steps incur extra data-plane overhead. Though the over-
head of marking packets and processing the marked packets
is minimal, the measurement overhead associated with moni-
toring path performance can be significant, particularly ifthe
measurements are fine-grained (e.g., the the destination prefix
level).

If multiple paths are associated with a particular class
of traffic, the router can send a fraction of the packets on
each path, to balance load and circumvent congestion. In
Section III-A, we survey existing techniques for forwarding
packets on alternate paths. In Section III-B, we discuss the
pros and cons of splitting traffic at different granularities. We
focus on existing techniques (round-robin, hashing, and flow-
cache), but also describe flowlet-cache, a promising technique
that is yet to be deployed.

A. Forwarding on Alternate Paths

Tunneling is a widely available alternative to destination-
based hop-by-hop forwarding that offers much more flexibility.
At a high level, tunneling establishes alogical link between
two routers (or hosts). Forwarding packets over a tunnel
usually involves “pushing” a header (or label) at the tunnel
ingress and “popping” the header (or label) at the tunnel
egress, in a process calledencapsulation. For example, in
Figure 2, a packet going fromB to F could be encapsulated
to ensure it travels throughE. At B, an extra header would
be “pushed” on the packet to indicateE is the destination.
Once the packet reaches routerE, the extra header would
be “popped” from the packet, thenE would forward the
packet toF hop-by-hop. Encapsulation can be implemented
through IP-in-IP tunnels or MultiProtocol Label Switching
(MPLS). MPLS is a label-based forwarding mechanism that
encapsulates packets using labels. In either case, encapsulation
requires packets to carry an extra label or an extra IP header.
In the case of MPLS, each router also stores the label-based
forwarding table, although a label-based look-up is simpler
than matching the longest prefix of the destination address.

The path between the tunnel ingress to tunnel egress can
depend on the underlying routing protocol, or the entire
path can be specified explicitly. Encapsulation alone is often
sufficient for most application needs such as directing a packet

3



to a particular egress point or through a particular network.
When the path between tunnel endpoints only depends on the
underlying protocol, the path adapts automatically when the
topology changes. For example, in Figure 2,B could forward
the packet towardsE one hop at a time. This implies if
the link from C to D fails, the encapsulated packets would
transparentlyswitch to another path. Still, by only specifying
the endpoints of the tunnel, it is difficult to satisfy certain
applications needs,e.g., an end-to-end bandwidth requirement.
So for those specialized applications, explicit routing isa
useful alternative.

Explicit routingspecifies every router (or network) along the
path. The routers (or networks) along the path can be specified
directly in the packet header or indirectly through a label in the
packet header. One possibility is to implement explicit routing
by specifying the whole router-level path with IP options.
In Figure 2, if the path sequence(A, B, C, D, E, F ) is an
explicit path for certain packets traveling fromA to F , then
A would know to forward to routerB based on the IP options
in the packet header. An alternative is to implement explicit
routing with MPLS as a combination of Constrained Shortest
Path First (CSPF) and Resource Reservation Protocol (RSVP).
CSPF selects the path using a variety of metrics, while RSVP
is the signaling protocol used to set-up the path within a single
network. RSVP establishes a hop-by-hop chain of labels to
represent the path and it reserves bandwidth along the path by
signaling in advance. At source end of the path, a label would
be pushed onto the packet based on information from the
packet header such as source address, destination address,and
port numbers. Each intermediate router would do a label look-
up to find the outgoing label and outgoing link. Compared
to tunneling, explicit routing does impose more data-plane
overhead (to swap the labels at each hop), though the overhead
is manageable when the number of explicitly-routed paths is
limited.

B. Flexible Splitting Amongst Multiple Paths

The network management system may wish to balance
traffic between multiple paths to achieve certain traffic en-
gineering objectives. For example, sending40% of traffic on
one path and60% on another could lead to less congestion
in the network. To achieve a splitting percentage determined
by the network management system, traffic can be switched
onto different paths using four major techniques: round-robin,
hashing, flow cache, and flowlet cache [6]. Each technique
strikes a different trade-off between overhead, splittingper-
centage accuracy, and the likelihood of packet reordering.

A weighted round-robin will switch traffic at the granu-
larity of packets. Since packets are small in size, round-robin
scheduling can achieve very accurate splitting percentages on
a small timescale. Round-robin scheduling also adds very
little extra overhead on today’s forwarding functions. The
downside is that since different paths between the same source-
destination pair often have different delays, some packets
which belong to the same TCP flow could arrive out-of-order.
This is problematic as TCP considers out-of-order packet
delivery as a sign of network congestion, and consequently,the

TCP sender would slow down the transfer. If the paths have
very similar delay, then weighted round-robin is a good choice
due to its low overhead and accurate splitting percentages.

Hashing involves first dividing the hash space into weighted
partitions corresponding to the outbound paths. Then packets
are hashed based on their header information and forwarded
on the corresponding path. A flow is defined by the following
attributes in the packet header: source IP address, destination
IP address, transport protocol, source port, and destination
port. Hashing ensures in-order delivery of most packets since
a flow is likely to be mapped to a specific path for its
entire duration. On the other hand, since flows vary drastically
in their sizes and rates, it is difficult to realize accurate
splitting percentages. Finally, if splitting percentageschange
or a path fails, a flow is likely to be hashed onto a different
path, possibly causing a few out-of-order packets during the
transition.

The best way to avoid out-of-order packets is to implement
a flow cache. A flow cache is a forwarding table that keeps
track which path each active flow traverses. A flow cache
ensures packets belonging to the same flow always follow the
same path. Another advantage of flow caching over hashing is
that when new flows arrive, they can be placed on any path,
which leads to better control of dynamic splitting percentages,
although the splitting percentages achieved are less accurate
than in round-robin scheduling. The major drawback is that a
high-speed link could easily carry tens of thousands concurrent
flows [6], leading the flow cache to consume a significant
amount of additional memory in the router.

It is possible to reduce data-plane overhead and improve
splitting ratios by dividing traffic at the granularity of packet-
bursts, using aflowlet cache [6]. If the time between two
successive packets is larger than the maximum delay difference
between the multiple paths, the second packet can be safely
forwarded on any available path without the risk of packet
reordering. A flowlet cache is typically much smaller than a
flow cache, since there are significantly fewer active packet
bursts than active flows [6]. In addition, flowlet switching
always achieves within a few percent of the desired splitting
percentage, without reordering any packets. Overall, flowlet
cache would be the best choice for most applications, although
it is not yet implemented in routers today.

IV. M ULTIPATH ROUTING BY A SINGLE NETWORK

In this section, we present incrementally deployable tech-
niques which can be adopted by a single network. Each ISP
can exploit its internal path diversity, and a multihomed stub
network can split traffic over multiple end-to-end paths.

A. Intradomain: Non-shortest Paths within an ISP

Each network can select its own IGP, allowing it to change
the protocol without requiring cooperation from others. Inlink-
state protocols, since link weights and topology information
are already flooded to all routers, multipath routing does not
incur extra dissemination overhead. One natural way to extend
a link-state protocol is to compute theK-shortest paths rather
than just the shortest path. This is cumbersome for several

4



reasons. To start with, computing theK-shortest paths is
more computationally intensive (i.e.,O(N log N + KN) for
a network withN routers) than computing a single shortest
path (i.e.,O(N log N)). The forwarding-table size would also
grow with the increase in number of paths per destination.
Perhaps the biggest overhead increase is in the data plane,
whereK tunnels need to be established between each source-
destination pair. If each router does destination-based hop-
by-hop forwarding, then there is no guarantee packets would
travel on theK-shortest paths from source to destination. This
is significantly more cumbersome than the current hop-by-hop
forwarding.

Another approach is to run multiple instances of the link-
state routing protocol [10]. Instead of having asingleweight
associated with each link, each link has avector of weights.
Each instance of the link-state protocol can just compute the
shortest path and create a forwarding table for the correspond-
ing topology. The vector of weights does not lead to the
K shortest paths, but rather a shortest path for each ofK

sets of link weights. Each set of link weights can be tuned
independently to customize the paths to different applications;
for example, one set of weights could be tuned for high
throughput and another for low delay. The link weights could
even be specialized to handle different failure scenarios.In the
control plane, ifK routing instances run simultaneously, the
control-plane overhead would be exactlyK times as much as
shortest-path routing. In the data plane, there are two waysto
forward packets on the multiple topologies. The simpler (and
more restrictive) way is for each packet to belong to a single
topology [10]. Further benefits are possible when packets can
switch between topologies based on network conditions [10].

An alternate approach to multipath routing is to forward
traffic on all paths that make forward progress toward the
destination [8], [9], based on a single set of link weights.
Each router can make local forwarding decisions based on
the cost of the shortest path through each of its neighbors [9].
Forwarding packets only to routers that have a shorter path
to the destination guarantees that the path is loop-free [8]. To
encourage the use of shorter paths, diminishing proportions of
the traffic would be directed on the longer paths. For example,
in Figure 1b,i has two outgoing links along shorter paths to
j. Since these paths have costs8 and 9, less traffic would
be placed on the path with cost9 [9]. Under this scheme, the
path-computation costs are stillO(N log N), since each router
will just run Dijkstra’s shortest-path algorithm. Compared to
shortest-path routing, forwarding along the “downward” paths
requires more entries in the forwarding tables. In addition,
there will be slightly more data-plane overhead in order to im-
plement the splitting percentages, as explained in SectionIII-
B. Still, each router can make local forwarding decisions
without the use of tunnels.

B. Interdomain: Fine-grained Splitting by a Multihomed Stub

So far, we have described how to exploit path diversity
inside a single network. Next, we will examine how to
exploit interdomain path diversity. Many routers learn multiple
interdomain paths and could conceivably split traffic over them

by installing multiple next-hops in the forwarding table. This
is not done in practice due to the extra control-plane overhead.
For ISP networks, edge routers would need to announce
multiple paths to neighboring networks, and the neighboring
networks would now need to store multiple paths. In addition,
tunneling would be needed to direct packets on any non-default
path, as explained in Section III.

In a stub network, however, edge routers do not need
to propagate any of the learnt paths. In addition, packet
classification is simpler for a stub network since the data
rates tend to be lower and all packets originate from a single
domain. Therefore, stub networks are natural places to deploy
flexible splitting. Since applications are run at the edge, the
stub network also has direct knowledge of the application
requirements. Flexible splitting enables a network to place
different classes of traffic onto different paths and balance load
across multiple paths. Balancing load between multiple classes
allows for efficient use of network resources and can avoid
potential routing oscillations. Luckily, flexible path selection
adds very little extra overhead on the data plane for a stub
network, since choosing an outgoing link determines the entire
path a packet will follow and no tunneling is required.

V. CROSS-NETWORK COOPERATION FORMULTIPLE PATHS

When multiple networks cooperate, even more paths are
available than when a network acts alone. In addition to scal-
ability challenges, new business models must be put in placeto
enable inter-network cooperation,e.g., charging for providing
additional paths. In this section, we focus on proposed schemes
which access additional paths with only limited cooperation
between networks. Sources can encapsulate packets to direct
the traffic through adeflection point—an end host or edge
router that lies on an alternate path. This only requires a
bilateral agreement between two parties. Sources can also
deflect packets indirectly viatagging, where a few opaque bits
in the packet header are used to indicate dissatisfaction with
the current path. Tagging requires more networks to cooperate
since routers need to be modified to forward packets based on
the tags.

A. Encapsulation: Forwarding through a Deflection Point

Encapsulation can be used to explicitly force traffic onto
an alternate path with better performance properties. A packet
would be encapsulated to first arrive at the deflection point,
then follow that deflection point’s default path to the destina-
tion [1], [7]. Deflections can occur at the application layeror
the network layer.

The easiest way to access another path is by deflecting
through another end host, which does not require cooperation
from or coordination between ISPs. First, anoverlay or
logical topology can be established between end hosts using
tunnels [11]. Then each end host can measure the end-to-end
performance properties of paths to a destination via other end
hosts. If a path with better performance is found, packets can
be deflected through another end host as seen in Figure 3. In
addition to ease of deployment, application-layer deflections
are attractive because they avoid advertisement of additional

5



paths. On the other hand, as the overlay grows in size, probing
all paths through other end hosts imposes a significant amount
of measurement overhead and does not scale beyond tens of
end hosts [11]. In addition, sending traffic through other end
hosts consumes edge link bandwidth and potentially incurs
extra costs for the edge network.

A more scalable and efficient approach is for ISPs to provide
alternative paths [1], [7]. As seen in Figure 3, the deflection
point can be an edge router inside a network, rather than an
end host. While this approach requires more cooperation from
(and between) ISPs, it is still incrementally deployable. To
ensure scalability, a network would only request an alternative
path (perhaps with certain properties) from another network if
it is unhappy with its default path. For example in Figure 3,
the source could request an alternative path from its provider
networkA for reaching the destinationD, networkA can then
choose to forward traffic on the alternative path(A, C, D),
possibly for a price. Encapsulation would be used to deflect
the packets through networkC. The amount of control-plane
overhead is directly proportional to the portion of networks
unhappy with their default paths.

B. Tagging: Requesting an Alternate Path

An alternative to encapsulation is for end-hosts to simply
tag their packets to request an alternate path [10], [8], without
knowing the details of the path. A router forwards an incoming
packet on the default path or an alternate path, based on
the associated tag. Alternative paths inside an ISP can be
constructed by one of the methods described in Section IV-A.
Tagging without path visibility is effective when an end-to-
end path is undesirable due to one particular segment of the
path. For example, the path could contain a low capacity link,
a high delay link, or a point of congestion. In these cases,
routing around the problem link or router does not require
direct knowledge of the route. By trying out a few tag values,
the source network is likely to find a better path.

Tagging is quite scalable in the control plane since interme-
diate networks do not need to disseminate extra informationor
store network-level paths. An intermediate network can merely
exploit the path diversity inside its own domain. There is little
extra data-plane overhead, since the tag can use some rarely
used bits in the existing IP header [8]. The extra data-plane
overhead only comes from an ISP processing the received
tag, and directing the packet onto an alternate path based on
its tag value. Although tagging imposes less overhead than
forwarding through a deflection point, it may require business
relationships between the stub network and multiple ISPs. The
incentives for honoring the tags are the most obvious in the
context of hosts served by a single ISP.

VI. CONCLUSIONS

The ability to forward traffic on multiple paths would be
useful for customizing paths for different applications, improv-
ing reliability, and balancing load. Yet Internet-wide multipath
routing remains elusive, due to scalability and economic
challenges. In this paper, we survey a variety of deployed and
incrementally deployable techniques which achieve flexible

multipath routing. Routers already have data-plane support for
forwarding on alternate paths through tunneling: encapsulation
and explicit routing, though such techniques should be usedin
moderation for scalability reasons. We examine existing tech-
niques for fine-grained traffic division, then propose flowlet-
cache as a more accurate and scalable alternative. To access
more end-to-end paths, stub networks can continue the trend
of multihoming and extend it to perform fine-grained load
balancing.

Inside an ISP, multi-topology routing and forwarding on
“downward” paths are both light-weight and easily deployable
methods to leverage internal path diversity. Finally, we argue
that deflecting packets at the network layer is a promising
way to access more end-to-end paths with limited cooperation
between networks, though new business models are needed
to enable inter-network cooperation. We believe that more
research could be done to better quantify the trade-off between
overhead and performance for the more heavy-weight solu-
tions, including end-to-end signaling techniques not surveyed
in this paper. As technology advances, routers may become
more capable of handling the overhead, making a wider range
of solutions viable in practice. In addition, the economic
incentives for providing value-added services will likelygrow
in the future and hopefully motivate the creation of new inter-
network business models that enable Internet-wide multipath
routing.

ACKNOWLEDGMENTS

We would like to thank Dan Wendlandt, Vytautas Valancius,
Rui Zhang, Yi Wang, Haakon Larsen, and Tian Lan for their
feedback on earlier drafts of this paper. We also like to thank
our shepherd Steve Uhlig and the anonymous reviewers for
their insightful comments.

REFERENCES

[1] D. Wendlandt, I. Avramopoulos, D. G. Andersen, and J. Rexford, “Don’t
secure routing protocols, secure data delivery,”in Proc. SIGCOMM
Workshop on Hot Topics in Networking, November 2006.

[2] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,”in Proc. ACM SIGCOMM,
August 2005.

[3] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The
end-to-end effects of Internet path selection,”in Proc. ACM SIGCOMM,
August 1999.

[4] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker, “Characterizing
and measuring path diversity of Internet topologies,”in Proc. ACM
SIGMETRICS, June 2003.

[5] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility
of IP restoration in a tier-1 backbone,”IEEE Network Magazine, March
2004.

[6] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic Load
Balancing Without Packet Reordering,”in ACM SIGCOMM Computer
Communication Review, June 2007.

[7] W. Xu and J. Rexford, “MIRO: Multipath Interdomain Routing,” in
Proc. ACM SIGCOMM, August 2006.

[8] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” in Proc. ACM SIGCOMM, August 2006.

[9] D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed exponentially-
weighted flow splitting,” in Proc. IEEE INFOCOM, May 2007.

[10] M. Motiwala, N. Feamster, and S. Vempala, “Path splicing: Reliable
connectivity with rapid recovery,” in Proc. SIGCOMM Workshop on
Hot Topics in Networking, November 2007.

[11] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris,
“Resilient Overlay Networks,”in Proc. ACM SOSP, October 2001.

6



Jiayue He received her B.A.Sc. (Hon.) in Engineer-
ing Science from University of Toronto in 2004.
She is currently working towards her PhD degree at
Princeton University. Her PhD is partially funded by
the Gordon Wu Fellowship at Princeton University
and the graduate fellowship from National Science
and Engineering Research Council of Canada.

Jennifer Rexford is a Professor in the Computer
Science department at Princeton University. From
1996-2004, she was a member of the Network
Management and Performance department at AT&T
Labs–Research. Jennifer serves on the CRA Board
of Directors, the ACM Council, and the GENI
Science Council. She received her BSE degree in
Electrical Engineering from Princeton University in
1991, and her MSE and PhD degrees in Computer
Science and Electrical Engineering from the Univer-
sity of Michigan in 1993 and 1996, respectively.

7



�� ��
� �� �� �� � �

� 	�
(a) Topology between 4 networks:B andC are ISPs (b) Topology inside networkC

A andD are stub networks

Fig. 1. Sample inter-network topology, with a close-up on one network.

8



tunnelLogical view:

Physical view:
AA BB EE FFCC DD

Src: A
Dest: F

data

Src: A
Dest: F

data

Src: A
Dest: F

data

Src: A
Dest: F

data

Src: A
Dest: F

data

Src:B
Dest: E

Src: A
Dest: F

data

Src: A
Dest: F

data

Src:B
Dest: E

AA BB EE FF

Src: A
Dest: F

data

Src:B
Dest: E

Src: A
Dest: F

data

Src: A
Dest: F

data

Src:B
Dest: E

Fig. 2. Illustration of how a tunnel works.

9



A

B C

D

src

dest

host

Fig. 3. The default path, shown in solid line is through network B. Deflection through network C is possible either with an overlay (dot-dash line) or through
an ISP (dashed line).

10


