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ABSTRACT
IP anycast, with its innate ability to find nearby resources
in a robust and efficient fashion, has long been considered an
important means of service discovery. The growth of P2P
applications presents appealing new uses for IP anycast. Un-
fortunately, IP anycast suffers from serious problems: it is
very hard to deploy globally, it scales poorly by the num-
ber of anycast groups, and it lacks important features like
load-balancing. As a result, its use is limited to a few crit-
ical infrastructure services such as DNS root servers. The
primary contribution of this paper is a new IP anycast archi-
tecture, PIAS, that overcomes these problems while largely
maintaining the strengths of IP anycast. PIAS makes use of a
proxy overlay that advertises IP anycast addresses on behalf
of group members and tunnels anycast packets to those mem-
bers. The paper presents a detailed design of PIAS and evalu-
ates its scalability and efficiency through simulation. We also
present preliminary measurement results on anycasted DNS
root servers that suggest that IP anycast provides good affin-
ity. Finally, we describe how PIAS supports two important
P2P and overlay applications.

Categories and Subject Descriptors: C.2.1 [Network Ar-
chitecture and Design]: Network communications

General Terms: Design, Measurement.

Keywords: Anycast, Proxy, Overlay, Routing, Architecture.

1. INTRODUCTION
Ever since it was proposed in 1993, IP anycast[1]1 has been

viewed as a powerful IP packet addressing and delivery mode.
Because IP anycast typically routes packets to the nearest of
a group of hosts, it has been seen as a way to obtain efficient,
transparent and robust service discovery . In cases where
the service itself is a connectionless query/reply service, IP

1IP anycast is an IP addressing and delivery mode whereby
an IP packet is sent to one of a group of hosts identified by
the IP anycast address. Where IP unicast is one-to-one, and
IP multicast is one-to-many, IP anycast is one-to-any.
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anycast supports the complete service, not just discovery of
the service. The best working example of the latter is the
use of IP anycast to replicate root DNS servers [2][3] without
modifying DNS clients. Other proposed uses include host
auto-configuration [1] and using anycast to reach a routing
substrate, such as rendezvous points for a multicast tree[4][5]
or a IPv6 to IPv4 (6to4) transition device[6].

In spite of its benefits, there has been very little IP anycast
deployment to date, especially on a global scale. The only
global scale use of IP anycast in a production environment
that we are aware of is the anycasting of DNS root servers
and AS-112 servers[7]2.

The reason for this is that IP anycast has serious limita-
tions. Foremost among these is IP anycast’s poor scalability.
As with IP multicast, routes for IP anycast groups cannot
be aggregated—the routing infrastructure must support one
route per IP anycast group. It is also very hard to deploy IP
anycast globally. The network administrator must obtain an
address block of adequate size (i.e. a /24), and arrange to
advertise it into the BGP substrate of its upstream ISPs. Fi-
nally, the use of IP routing as the host selection mechanism
means that important selection metrics such as server load
cannot be used. It is important to note that while IPv6 has
defined anycast as part of its addressing architecture[8], it is
also afflicted by the same set of problems.

By contrast, application layer anycast provides a one-
to-any service by mapping a higher-level name, such as a
DNS name, into one of a group of hosts, and then inform-
ing the client of the selected host’s IP address, for instance
through DNS or some redirect mechanism. This approach is
much easier to deploy globally, and is in some ways superior
in functionality to IP anycast. For example, the fine grained
control over the load across group members and the ability
to incorporate other selection criteria makes DNS-based any-
cast the method of choice for Content Distribution Networks
(CDNs) today.

In spite of this, we believe that IP anycast has compelling
advantages, and its appeal increases as overlay and P2P ap-
plications increase. First, IP anycast operates at a low level.
This makes it potentially useable by, and transparent to, any
application that runs over IP. It also makes IP anycast the
only form of anycast suitable for low-level protocols, such
as DNS. Second, it automatically discovers nearby resources,
eliminating the need for complex proximity discovery mecha-
nisms [9]. Finally, packets are delivered directly to the target
destination without the need for a redirect (frequently re-

2anycasted servers that answer PTR queries for the RFC 1918
private addresses



quired by application-layer anycast approaches). This saves
at least one packet round trip, which can be important for
short lived exchanges. It is these advantages that have led to
increased use of IP anycast within the operational commu-
nity, both for providing useful services (DNS root servers),
and increasingly for protecting services from unwanted pack-
ets (AS112 and DDoS sinkholes [10]).

The primary contribution of this paper is the detailed de-
scription of a deployment architecture for an IP anycast ser-
vice that overcomes the limitations of today’s “native” IP
anycast while adding new features, some typically associated
with application-level anycast, and some completely new. This
architecture, called PIAS (Proxy IP Anycast Service),
is composed as an overlay, and utilizes but does not impact
the IP routing infrastructure. The fact that PIAS is an IP
anycast service means that clients use the service completely
transparently—that is, with their existing IP stacks and ap-
plications.

PIAS allows an endhost in an anycast group (anycast group
member, or anycast target) to receive anycast packets for
that group via its normal unicast address (and normal proto-
col stack). The anycast target joins the anycast group simply
by transmitting a request packet to an anycast address (again,
via its unicast interface). The target may likewise leave the
group through a request packet, or by simply becoming silent.

PIAS utilizes the IP address space efficiently: thousands
of IP anycast groups may be identified through a single IP
address. It scales well by the number of groups, group size
and group churn with virtually no impact on the IP routing
infrastructure. It provides fast failover in response to failures
of both target hosts and PIAS infrastructure nodes.

PIAS can select targets based on criteria other than prox-
imity to the sending host, notably including the ability to
load balance among targets. PIAS has the unique feature
that an anycast group member can also transmit packets to
other members of the same anycast group. This is in contrast
to native IP anycast, where a group member would receive
its own packet if it transmitted to the group. This feature
makes IP anycast available to P2P applications, something
not possible if a host can’t both send to and receive from the
anycast group.

The remainder of the paper is organized as follows: Section
2 identifies the features of an ideal anycast service. Section
3 spells out the system design together with the goals sat-
isfied by each design feature. Section 4 presents simulations
and measurements meant to evaluate various features of the
PIAS design. Section 5 discusses related work and section 6
describes a few applications made possible by PIAS. Section
7 discusses other important goals that PIAS must fulfill and
section 8 presents our conclusions.

2. DESIGN GOALS
This section specifically lays out the design goals of PIAS,

and briefly comments on how well PIAS meets those goals.
The subsequent design description section refers back to these
goals as needed. The goals are listed here in two parts. The
first part lists those goals that are accomplished by native IP
anycast, and that we wish to retain. The second part lists
those goals that are not accomplished by native IP anycast.
In this way, we effectively highlight the weaknesses of IP any-
cast, and the contributions of PIAS.

1. Backwards Compatible: Native IP anycast is completely

transparent to clients and routers , and we believe that
this transparency is critical to the success of a new IP
anycast service. Because PIAS is an overlay technology
that uses native IP anycast, it does not change clients
and routers.

2. Scale by group size: By virtue of being totally dis-
tributed among routers, native IP anycast scales well
by group size. PIAS has no inherent group size limi-
tation. PIAS is deployed as an overlay infrastructure,
and can scale arbitrarily according to the size of that
infrastructure.

3. Efficient packet transfer : Because native IP anycast
uses IP routing, its paths are naturally efficient. As
an overlay, PIAS imposes some stretch penalty on the
paths packets take. The penalty imposed by PIAS is
small (section 4.3), and shrinks as the PIAS infrastruc-
ture grows.

4. Robustness: Native IP anycast’s robustness properties
(including packet loss) are similar to IP unicast. PIAS
is engineered to be similarly robust.

5. Fast failover : Failover speed in Native IP anycast de-
pends on the convergence speed of the underlying rout-
ing algorithms, and can be fast (OSPF) or somewhat
slow (BGP). PIAS can be engineered to almost always
rely on OSPF for certain types of failover (section 3.6).
The PIAS overlay exposes additional failover situations
that go beyond IP routing, and these are handled ac-
cordingly (Section 3.6).

The following are the goals that native IP anycast does not
satisfy.

6. Ease of joining and leaving: Target hosts must not
have to interact with IP routing to join and leave.

7. Scale by the number of groups: In addition to scaling
by the usual metrics of memory and bandwidth, we re-
quire that PIAS also make efficient use of the IP ad-
dress space. PIAS is able to accommodate thousands
of groups within a single address by incorporating TCP
and UDP port numbers as part of the group address.

8. Scale by group dynamics: Globally, IP routing behaves
very badly when routes are frequently added and with-
drawn. The PIAS overlay hides member dynamics from
IP routing, and can handle dynamics caused both by
continuous member churn and flash crowds (including
those caused by DDoS attacks).

9. Target Selection criteria: IP anycast can only select
targets based on proximity. At a minimum, we wish to
add load and connection affinity as criteria.

3. DESIGN DESCRIPTION
This section gives a detailed description of PIAS. We take

a “layered” approach to the description—we start with the
core concepts and basic design and then step-by-step describe
additional functionality that satisfies specific goals listed in
section 2.

PIAS is deployed as an overlay infrastructure. It may be
deployed by a CDN company like Akamai, by multiple coop-
erating ISPs, or even by a single ISP (though the efficacy of
proximity discovery would be limited by the ISP’s geographic
coverage). Multiple distinct PIAS infrastructures may be de-
ployed. In this case, each operates using distinct blocks of IP



AP

AP

AP

AP

Anycast
Client

Anycast
Client

Anycast
Target

Anycast
Target

AP Anycast Proxy

Unicast (Tunnel/NAT)

Native IP Anycast

Figure 1: Proxy Architecture: the client packets
reaching the proxies through native IP anycast are
tunnelled to the targets

anycast addresses, and they do not interact with each other3.
In the remainder of this document, for simplicity of exposi-
tion, we assume a single PIAS infrastructure.

The basic idea of PIAS, illustrated in Figure 1, is very sim-
ple. Router-like boxes, hereon referred to as anycast proxies
(AP or simply proxies), are deployed at various locations in
the Internet, for example at POPs (Point of Presence) of dif-
ferent ISPs. These proxies advertise the same block of IP
addresses, referred to as the anycast prefix , into the rout-
ing fabric (BGP, IGP). As such, the proxies are reachable by
native IP anycast—a packet transmitted to the anycast prefix
will reach the closest proxy. However, these proxies are not
the actual anycast target destinations(AT)4. Rather, true
to their name, they proxy packets that reach them via na-
tive IP anycast to the true target destinations using unicast
IP. This proxying can take the form of lightweight tunnels
or NAT. NAT allows for backwards compatibility with the
protocol stack at target hosts, but increases processing at the
proxy.

This novel combination of native IP anycast with tunnelling
to the unicast addresses of the targets allows PIAS to fulfill
three critical design goals and drives the rest of the system
design. First, it allows for efficient use of the address space as
all the IP addresses in the prefix advertised by the proxies can
be used by different anycast groups. In fact, PIAS does one
better. It identifies an anycast group by the full transport
address (TA), i.e. IP address and TCP/UDP port, thus al-
lowing thousands of anycast groups per IP address. Second, it
solves the IP routing scaling problem by allowing many any-
cast groups to share a single address prefix and hence, fulfills
goal 7. Finally, it relieves targets from the burden of inter-
acting with the routing substrate. They can join an anycast
group by registering with a nearby proxy that is discovered
using native IP anycast. This fulfills goal 6.

The reader may notice two suspicious claims in the last
paragraph. First, we claim to ease deployment by running
unicast at the target instead of anycast, and yet the proxies
still must run anycast. So, how is this an improvement? The
benefit is that the difficult work of deploying IP anycast is
borne by the anycast provider once, and amortized across
many anycast groups. Second, we claim to improve scaling
by allowing thousands of IP anycast groups to share a single
IP address prefix. All we’ve really done, however, is to move
the scaling problem from the IP routing domain to the PIAS
infrastructure domain. This is quite intentional. As we argue

3Indeed, a single operator could deploy multiple distinct
PIAS infrastructures as a way to scale.
4the members of the anycast group; hereon referred to as
anycast targets or simply targets

later on, the scaling issues are much easier to deal with in the
overlay than in IP routing.

PIAS offers two primitives to the members of an anycast
group, which involve sending messages to a nearby proxy:

• join(IPA:portA,IPT :portT ,options): this message instructs
the proxy to forward packets addressed to the anycast
group identified by the TA IPA:portA to the joining
node’s unicast TA IPT :portT . The options may spec-
ify additional information such as the selection criteria
(load balance etc.), delivery semantics (scoping etc.), or
security parameters needed to authenticate the target
host. These are discussed later.

• leave(IPA:portA,IPT :portT ,options): this message in-
forms the proxy that the target identified by TA IPT :portT

has left the group IPA:portA. options are the security
parameters.

The join and leave messages are transmitted to the anycast
address IPA(that belongs to the anycast prefix) at some well-
known port that is dedicated to receiving registration mes-
sages. This means that no extra configuration is required for
a target to discover a nearby proxy.

Note that we don’t specify a “create group” primitive. For
the purpose of this paper, we assume that the first join essen-
tially results in the creation of the group. In practice, a sub-
scriber to the service would presumably have entered into a
contract with the anycast service provider, which would have
resulted in the assignment of anycast TAs to that subscriber.
The subscriber would also have obtained authentication in-
formation using which targets may join the group. While the
issues surrounding this sort of group creation are important,
they are not central to the PIAS architecture, and we don’t
discuss them further.

3.1 The Join Anycast Proxy (JAP)
A target may leave a group either through the leave prim-

itive, or by simply falling silent (for instance, because the
target is abruptly shut off or loses its attachment to the In-
ternet). This means that the Join AP (JAP—the nearby
proxy with which the target registers; shown in figure 2) must
monitor the health of its targets, determine when they are no
longer available, and treat them as having left the group. The
proximity of the JAP to the target makes it ideal for this.

The JAP must also inform zero or more other anycast prox-
ies (APs) of the target(s) that have registered with it. This is
because not all APs may be JAPs for a given group (that is,
no target joined through them), but anycast clients (ACs)
may nevertheless send them packets destined for the group.
A proxy that receives packets directly from a client is referred
to as the Ingress AP (IAP)5 for the client. Note that the
client-IAP relation is established using native IP anycast. As
an IAP, the proxy must know how to forward packets towards
a target; even though the IAP may not explicitly know of the
target.

One possible way to achieve this would have the JAP spread
information about targets associated with it to all proxies.
This allows the IAP to tunnel packets directly to clients (as in
Figure 1). However, such an approach would hamper PIAS’s
ability to support a large number of groups. In fact, Figure 1
is conceptual—PIAS’s approach for spreading group infor-
mation is described in the next section and the actual paths
taken by packets are shown in Figure 2.

5in figure 1 the proxies in the client-target path are IAPs
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Figure 2: Initial (left) and subsequent (right) packet path. The table shows the various packet headers.
Symbols in block letters represent IP addresses, small letters represent ports. AA(Anycast Address) is one
address in the address block being advertised by PIAS, AA:g is the transport address assigned to the group
the target belongs to, while AT:r is the transport address at which the target wants to accept packets. Here,
the target joined the group by invoking join(AA:g,AT:r,options)

3.2 Scale by the number of groups
In the previous section, we mentioned the need for a scheme

that would allow PIAS to manage group membership infor-
mation while scaling to a large number of groups. For any
given group, we designate a small number of APs (three or
four) to maintain a list of JAPs for the group. When acting
in this role, we call the AP a Rendezvous Anycast Proxy
(RAP). All APs can act as RAPs (as well as as JAPs and
IAPs).

The RAPs associated with any given group are selected
with a consistent hash [11] executed over all APs. This sug-
gests that each proxy know all other proxies, and maintain
their current up/down status. This is possible, however, be-
cause we can assume a relatively small number of global APs
(≤20, 000, a number we derive later). We also assume that,
like infrastructure routers, APs are stable and rarely crash or
are taken out of service. The APs can maintain each other’s
up/down status through flooding, gossip [12] or a hierarchi-
cal structure [13]. The current implementation uses flood-
ing. Such an arrangement establishes a simple one-hop DHT
and hence, limits the latency overhead of routing through the
proxy overlay.

When a proxy becomes a JAP for the group (i.e. a target
of the group registers with it), it uses consistent hashing to
determine all the RAPs for the group and informs them of
the join. This allows the RAP to build a table of JAPs for
the group.

The concept of the RAP leads to a packet path as shown
on the left side of Figure 2. When an IAP receives a packet
for an anycast group that it knows nothing about, it hashes
the group TA, selects the nearest RAP for the group, and
transmits the packet to the RAP (path segment 2). The
RAP receives the packet and selects a JAP based on whatever
selection criteria is used for the group. For instance, if the
criteria is proximity, it selects a JAP close to the IAP. The
RAP forwards the packet to the selected JAP (path segment
3), and at the same time informs the IAP of the JAP (the
RAP sends a list of JAPs, for failover purposes).

The use of RAPs unfortunately introduces another overlay
hop in the path from client to target. We mitigate this cost
however by having the IAP cache information about JAPs.
Once the IAP has cached this information, subsequent pack-
ets (not only of this connection, but of subsequent connec-
tions too) are transmitted directly to the JAP. This is shown
in the right-hand side of Figure 2. The time-to-live on this
cache entry can be quite large. This is because the cache en-

try can be actively invalidated in one of two ways. First, if
the target leaves the JAP, the JAP can inform the IAP of this
when a subsequent packet arrives. Second, if the JAP disap-
pears altogether, inter-AP monitoring will inform all APs of
this event. In both cases, the IAP(s) will remove the cached
entries, failover to other JAPs it knows of, or failing this, go
back to the RAP. Because of this cache invalidation approach,
the IAP does not need to go back to the RAP very often.

Note that in figure 2, the JAP is responsible for transmit-
ting packets to and receiving packets from its targets. The
reasoning for this is not obvious and goes as follows. We aim
to support legacy clients that expect to see return packets
coming from the same address and port to which they sent
packets. In general, targets cannot source packets from any-
cast addresses and so at least one proxy must be inserted into
the target-client path. Furthermore, if NAT is being used to
forward packets to the target, then the proxy with the NAT
state should be the proxy that handles the return packets.

This might argue for traversing the IAP in the reverse di-
rection too, since by necessity it must be traversed in the
forward direction. The argument in favor of using the JAP
however, boils down to the following two points. First, it is
highly convenient to keep all target state in one proxy rather
than two or more. Since the JAP in any event must monitor
target health, it makes sense to put all target state in the
JAP. Second, the JAP is close to the target, so the cost of
traversing the JAP in terms of path length is minimal (Sec-
tion 4.3). Also, by seeing packets pass in both directions, the
JAP is better able to monitor the health of the target. For
the most part, when a packet passes from client to target, the
JAP may expect to soon see a packet in the reverse direction.
Rather than force the JAP to continuously ping each target,
the lack of a return packet can be used to trigger pings.

The use of proxies implies that the PIAS path (AC⇒IAP⇒
JAP⇒AT) might be longer than the direct path (AC⇒AT)6.
However, the proximity of the client to the IAP and of the
target to the JAP should ensure that PIAS imposes minimal
stretch and hence fulfills goal 3. This has been substantiated
by simulating the stretch imposed by PIAS across a tier-1
topology map of the Internet.

The introduction of the RAP to allow scaling by the num-
ber of groups is somewhat equivalent to the extra round-trip
imposed by application-level anycast schemes, for instance in
the form of the DNS lookup or the HTTP redirect. This is

6the PIAS path may actually be shorter as inter-domain rout-
ing is not optimal[14]



one aspect of PIAS that falls short of native IP anycast, which
has no such extra hop. Having said that, it would be possible
for a small number of groups with minimal target churn to
operate without RAPS—that is, to spread JAP information
among all APs. This might be appropriate, for instance, for
a CDN or for 6to4 gateways. By-and-large, however, we can
expect most groups to operate with RAPs as described here,
and in the remainder of the design section, we assume that is
the case.

3.3 Scale by group size and dynamics
If the only selection criteria used by a RAP to select a JAP

were proximity to the client, then the RAP could ignore the
number of targets reachable at each JAP. In order to load
balance across targets, however, RAPs must know roughly
how many targets are at each JAP. In this way, RAPs can
select JAPs in a load balanced way, and each JAP can subse-
quently select targets in a load balanced way. Unfortunately,
requiring that RAPs maintain counts of targets at JAPs in-
creases the load on RAPs. This could be a problem for very
large groups, or for groups with a lot of churn.

We mitigate this problem by allowing the JAP to give the
RAP an approximate number of targets, for example within
25% or 50% of the exact number. For instance, if 25% error
is allowed, then a JAP that reported 100 targets at one time
would not need to report again until the number of targets
exceeded 125 or fell below 75. This approach allows us to
trade-off the granularity of load-balancing for scalability with
group size and dynamics. Indeed, this trade-off can be made
dynamically and on a per-group basis. A RAP that is lightly
loaded, for instance, could indicate to the JAP that 100%
accuracy reporting is allowed (i.e. in its acknowledgement
messages). As the RAP load goes up, it would request less
accuracy, thus reducing its load. The combination of the two-
tiered approach with inaccurate information in a system with
2 groups is illustrated in Figure 3 (the figure assumes that
there is just one RAP for each group). Section 4.2 presents
simulations that show the benefits of this approach in the
case of a large, dynamic group.

In any event, the number of targets is not the only measure
of load. Individual targets may be more-or-less loaded due
to differing loads placed by different clients. Ultimately, the
JAP may simply need to send a message to the RAPs when-
ever its set of targets are overloaded for whatever reason.

3.4 Scale by number of proxies
Given that we have laid out the basic architecture of PIAS,

we can now specifically look at PIAS deployment issues. A
central question is, how many proxies may we reasonably ex-
pect in a mature PIAS deployment, and can we scale to that
many proxies?

A key observation to make here is that the scaling charac-
teristics of PIAS are fundamentally different from the scaling
characteristics of IP routing. While the traffic capacity of
the Internet can be increased by adding routers, the scalabil-
ity of IP routing per se is not improved by adding routers.
All routers must contain the appropriate routing tables. For
instance, all Tier1 routers must contain the complete BGP
routing table no matter how many Tier1 routers there are.
For the most part, IP routing is scaled by adding hierarchy,
not adding routers.

With PIAS, on the other hand, scaling does improve by
adding proxies. With each additional proxy, there are lower

RAP1 RAP2

JAP1 JAPn

Target(group1) Target (group2)

RAP for group1

Low activity
approximate 
membership 
information

High activity
aliveness

RAP for group2

Figure 3: 2-tier membership management: the JAPs
keep the aliveness status for the associated targets;
the RAP for a group tracks the JAPs and an approx-
imate number of targets associated with each JAP

ratios of target-to-JAP and group-to-RAP. Growth in the
number of groups and targets can be absorbed by adding
proxies. However, an increase in the number of proxies presents
its own scaling challenge. Among other things, every proxy
is expected to know the up/down status of every other proxy.

The following describes a simple divide-and-conquer ap-
proach that can be used if the number of proxies grows too
large. In a typical deployment, a given anycast service provider
starts with one anycast prefix, and deploys proxies in enough
geographically diverse POPs to achieve good proximity. As
more anycast groups are created, or as existing anycast groups
grow, the provider expands into more POPs, or adds addi-
tional proxies at existing POPs. With continued growth, the
provider adds more proxies, but it also obtains a new address
prefix (or splits the one it has), and splits its set of proxies
into two distinct groups. Because the IP routing infrastruc-
ture sees one address prefix per proxy group, and because
a proxy group can consist of thousands of proxies and tens
of thousands of anycast groups, the provider could continue
adding proxies and splitting proxy groups virtually indefi-
nitely.

The size of a mature proxy deployment may be roughly
calculated as follows. There are about 200 tier-1 and tier-
2 ISPs [15]. An analysis of the ISP topologies mapped out
in [16] shows that such ISPs have ∼25 POPs on average.
Assuming that we’d like to place proxies in all of these POPs,
this leads to 5000 POPs. Assuming 3-4 proxies per POP
(for reliability, dicussed later), we get a conservative total of
roughly 20,000 proxies before the infrastructure can be split.

While 20,000 proxies is not an outrageous number, it is
large enough that we should pay attention to it. One concern
not yet addressed is the effect of the number of proxies on
IP routing dynamics. In particular, BGP reacts to route dy-
namics (flapping) of a single prefix by “holding down” that
prefix—ignoring any advertisements about the prefix for a
period of at most one hour [17]. A naive proxy deployment
where each proxy advertises the anycast prefix directly into
BGP would imply that a proxy failure necessitates a BGP
withdrawal for the prefix (from the site where the proxy is
located) that could lead to hold downs. While the proxy sta-
bility ensures that such events do not occur often, even the
occasional prefix instability and the consequent service dis-
ruptions that a large proxy deployment would entail are not
acceptable.

Hence, the deployment model involves more than one proxy
being placed inside every POP where the proxies are de-
ployed. Such an arrangement is referred to as an anycast



Segment Failure of Failover through Section
AC⇒IAP IAP IGP, onto a proxy 3.6

within the same
cluster

IAP⇒JAP JAP proxy health 3.6
monitoring system

JAP⇒AT AT pings between target 3.1,3.2
and JAP, passive
monitoring by JAP

AT⇒JAP JAP pings routed to a 3.6
different proxy
who becomes JAP

JAP⇒AC AC no failover needed -

Table 1: Failover along the PIAS forward
path (AC⇒IAP⇒JAP⇒AT) and reverse path
(AT⇒JAP⇒AC)

cluster7 and is based on the model used by the anycasted
f-root server[18]. The approach involves connecting one or
more routers and more than one proxy to a common subnet.
All the proxies in the cluster advertise the anycast prefix into
IGP while the routers advertise it into BGP and hence, a
proxy-failure does not lead to a BGP withdrawal.

3.5 Proximity
The introduction of the proxies into the IP path negates

the natural ability of native IP anycast to find the nearest
target. Therefore, we require explicit mechanisms in PIAS to
regain this capability.

As mentioned before, native IP anycast sets the client-IAP
and target-JAP path segments. The RAP, on the other hand,
selects the JAP, and therefore sets the IAP-JAP path segment
(on forward packets) and the JAP-client path segment (on
return packets). To ensure the proximity of the target to
the client, the RAP must choose a JAP close to the IAP and
hence, every AP must know the distance (in terms of latency)
between every pair of APs. This could be accomplished using
a proximity addressing scheme like GNP [19] or Vivaldi [20].

Another possibility is to use a simple, brute-force approach
whereby every AP occasionally pings every other AP and ad-
vertises the minimum measured round trip time (RTT) to
all other APs. This is feasible because, with the cluster de-
ployment approach, RAPs only need to know the distance
between each pair of clusters. While validating the above
claim would require experimentation with the actual deploy-
ment, back of the envelope calculations do paint a promising
picture for the simple approach.

3.6 Robustness and fast failover
The introduction of proxies between client and target might

have a negative impact on the robustness of PIAS as com-
pared to native IP anycast. On the other hand, RON[14] has
shown how an overlay structure can be used to improve the
resiliency of communication between any two overlay mem-
bers. Extending the same thought, PIAS, by ensuring the
robustness of packet traversal through the proxy overlay, can
improve the resiliency of communication between clients and
group members. We believe that given the stable nature
of the proxies, their deployment in well connected parts of
the Internet (tier-1 and tier-2 ISPs) and the engineering that
would go into their set-up, PIAS should be able to match, if
not better, the robustness offered by native IP anycast.

A related requirement is that of fast fail-over. ”E2E” na-
tive IP anycast has to achieve failover when a group member

7hereon referred to as proxy cluster or simply, cluster

crashes, so that clients that were earlier accessing this mem-
ber are served by some other group member. Given the way
native IP anycast works, this failover is tied to IP routing con-
vergence. Specifically, in case of a globally distributed group,
the failover is tied to BGP convergence, which in some cases
can extend to a few minutes[14]. Since PIAS uses native IP
anycast to reach the proxies, it is subject to the same issues.
The process of overcoming the failure of a proxy is termed as
proxy failover. In addition, the proxies must themselves be
able to fail over from one target to another which is termed
as target failover. Thus the failover problem seems worse
with PIAS than with native IP anycast; however, this is not
the case.

3.6.1 Target failover
As discussed in Sections 3.1 and 3.2, the JAP is responsible

for monitoring the aliveness of its targets. It does this through
pinging and tracking data packets to and from the target.
The JAP is also responsible for directing IAPs to delete their
cache entries when enough targets have failed.

3.6.2 Proxy failover
There is still the question of clients failing over onto a dif-

ferent proxy when their IAP crashes, and targets failing over
when their JAP crashes. And there are two levels at which
this must be achieved: at the routing level and at the overlay
level.

At the routing level, the system must be engineered such
that when a proxy fails, clients that were using this proxy
as an IAP are rerouted to some other proxy quickly. PIAS’s
deployment of proxies in a cluster means that this failover
is across proxies within the same cluster. Also, since the
proxies advertise the prefix into IGP, PIAS relies on IGP for
convergence after a proxy failure and hence can achieve faster
failover. Typically, this is of the order of a few seconds and
can be reduced to sub-second times[21].

At the overlay level, to monitor the health of proxies, we
use a 2-tier health monitoring system. At the first tier, the
proxies within the same proxy cluster are responsible for mon-
itoring each other. At the next level, each proxy in a clus-
ter monitors the health of a small number of other clusters.
When either an individual proxy or an entire cluster fails, it is
detected quickly and communicated to all remaining proxies.

Section 3.2 had described IAP behavior when a JAP goes
down. The only thing left to discuss is target behavior when
a JAP goes down. In this case, native IP anycast routing
will cause ping packets from the target to reach another JAP,
which will ask the target to re-register. Table 1 sums up the
way PIAS achieves failover across various segments of the
client-target path.

3.7 Target selection criteria
As described earlier, the RAP may select the JAP based on

a number of criteria, including proximity, load balancing, and
connection affinity8. The JAP subsequently selects a target.
It is this selection process, divorced from IP routing, that
allows PIAS to offer richer target selection criteria

How PIAS achieves load balance and proximity has already
been discussed. Connection affinity is discussed later in this
section. We wish to point out here that these three important
selection criteria are in fact at odds with each other. For

8Connection affinity—all packets from a given connection or
flow are delivered to the same target.
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exampl, if both load balance and proximity are important
criteria, and the JAP nearest to the IAP is heavily loaded,
then one of the other criteria must be compromised. This
basic set of trade-offs applies to application-level anycast as
well.

By never selecting the source of a packet as the target,
PIAS allows a host to be both a target and a client for a given
group. Packets sent by the target to the group address would
be forwarded to some group target other than the sender.
Note that this is not possible with native IP anycast and it
allows PIAS to support new P2P applications (section 6.1).

Proxies could potentially base their target selection on vari-
ous scoping criteria. These selection criteria can be expressed
by overloading the transport address, i.e. a group can have
separate TAs for each type of scoping. For instance, an any-
cast packet could be administratively scoped. That is, it
could indicate that the target should be in the same site,
belong to the same DNS domain, or have the same IP ad-
dress prefix (or be from different sites, DNS domains, or IP
prefixes). While how this would be configured and operated
is a good topic for further study, the selection functionality
of the RAP allows for the possibility of many such features.

Another form of selection would be to pick a random tar-
get rather than the nearest target - the RAP would pick a
random JAP who would then pick a random target. Random
selection among a group can be useful for various purposes
such as spreading gossip [22] or selecting partners in multicast
content distribution [23]. Indeed, in the PIAS architecture,
there is no reason an anycast packet cannot be replicated by
the RAP and delivered to a small number of multiple targets.
The salient point here is that, once IP anycast functionality is
divorced from IP routing, any number of new delivery seman-
tics are possible if the benefits justify the cost and complexity.

3.7.1 Connection affinity
Lack of connection affinity in native IP anycast has long

been considered one of its primary weak points. This issue
spills over into PIAS. Specifically, the issue is how to maintain
affinity when native IP anycast causes a different IAP to be
selected during a given client connection. If the same IAP
is always used, then packets will be sent to the same JAP
that was initially cached by the IAP. However, a change in
the IAP could lead to a change in the target the packets are
delivered to, as shown by Figure 4. Application-layer anycast
doesn’t have this problem, because it always makes its target
selection decision at connection start time, and subsequently
uses unicast.

A simple solution would be to have RAPs select JAPs based
on the identity of the client, such as the hash of its IP ad-
dress. This way, even if IP routing caused packets from a
given client to select a different IAP, they would be routed
to the same JAP and hence the same target. Unfortunately,
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Figure 5: Percentiles for the average time between
flaps for all the anycasted destinations

this approach completely sacrifices proximity and load bal-
ance. Broadly, another approach would be to modify the host
application by making it anycast aware, and redirect the host
to the unicast address of a selected target (either PIAS or the
target itself could do this redirect). There are some security
issues here—the redirect must be hard to spoof—but these
are surmountable.

We can also imagine complex schemes whereby JAPs and
IAPs coordinate to insure affinity. However, a fundamental
question that still has not been answered is, how good or
bad is the affinity offered by native IP anycast? It might be
the case that the affinity offered by native IP anycast is very
good; i.e. the probability that a connection breaks due to
a routing flap is very small as compared to the probability
of the connection breaking due to other factors. This would
imply that we do not need the complex mechanisms stated
above. In this regard, we did some measurements to find
out the affinity offered by native IP anycast. Our results,
while preliminary, suggest that native IP anycast affinity is
quite good, and PIAS need not do anything extra to provide
reasonable connection affinity. Details of these measurements
are presented in section 4.1

4. EVALUATION
In this section we evaluate the PIAS architecture using

measurements and simulations. Section 4.1 describes the
measurements made using the Planetlab[24] testbed and the
anycasted DNS root servers to argue for the sufficiency of
the affinity offered by native IP anycast and hence, PIAS.
Sections 4.2 and 4.3 present simulation results that show the
scalability (by group characteristics) and the efficiency of the
PIAS deployment. Finally, section 4.4 discusses our PIAS
implementation. We also measured the quality of proximity
selection offered by the anycasted DNS server deployments.
These are briefly discussed in section 7.

4.1 Connection Affinity measurements
As mentioned earlier, it is important to determine the affin-

ity offered by native IP anycast in order to understand the
need for mechanisms to ensure affinity in PIAS. This section
presents the results of our measurement study aimed to do so.
The goal of the study was to determine how often IP routing
selected different locations when sending packets to a native
IP anycast address. We used the anycasted root servers and
the AS-112 servers as the anycast destinations. For clients,
we used 129 Planetlab nodes belonging to 112 sites.

For each anycast destination, the clients probed the as-
sociated anycast address every 10 seconds to determine the
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location they are routed too. The servers at different loca-
tions have been configured by their operators to respond to a
TXT type DNS query with their location[25] and hence, the
probes were DNS queries generated using dig. This data was
collected for a period of 30 continuous days in Dec’04-Jan’05.

The probing of the anycasted destinations reveals changes
in routing or ’flaps’ that cause packets to be delivered to dif-
ferent locations of an anycasted server. So, a pair of probes
from a given Planetlab node switching from the San Jose f-
root server to the Palo Alto f-root server9 would be counted as
one flap. Using our measurement data, we determined the av-
erage time between flaps to a given root server for each prob-
ing node. Figure 5 plots various percentiles for the average
time between flaps when probing various anycasted servers.
The figure shows that the anycasted services are very stable
as viewed from almost all locations. For example, more than
95% of the nodes observed less than a flap per day for all the
anycasted destinations. Similarly, ∼48% of the nodes never
observed a flap when probing the f-root during the entire 30
day period.

Also, the few nodes that observed frequent flaps (i.e. an
average inter-flap duration of less than a day) had their av-
erage skewed by tiny bursts of instability in between large
periods of stability. For example, the Planetlab node that
experienced most flaps (208) over the month when probing
j-root was in Leixip, Ireland. Of these, 180 flaps occurred in
a 3-hour period. We conjecture that such phenomena can be
attributed to ephemeral issues specific to the sites to which
these nodes belong. While a more rigorous analysis of the col-
lected data and correlation with BGP-updates for the prefixes
representing these anycasted destinations would be needed
for determining the causes and patterns amongst these flaps,
the overall figures do paint an encouraging picture. These
measurements reveal that the probability that a two minute
connection breaks due to a flap is about 1 in 4500 and the
probability that an hour long connection breaks is about 1 in
150. Note that it is the short connections that, in order to
avoid the overhead of anycast to unicast redirect, need to rely
on anycast affinity. Long connections can incur the overhead
of a redirect and hence, could use anycast for discovery and
unicast for the actual communication.

We admit that the limited number(129) and variety of van-
tage points and the number of locations of the anycast des-

9San Jose and Palo Alto are two locations of the f-root server

tinations makes our study preliminary. Also, the operators
of j-root, based on their observations, have come to the op-
posite conclusion regarding the ability of native IP anycast
to support stateful connections[26]. While their results are
being debated by many in the operational community[27], we
are trying to acquire the relevant data-sets so as to find the
reason for the flapping observed by them (something that the
authors of the j-root study have not analyzed).

4.2 Scalability by group size and dynamics
In this experiment, we evaluate PIAS’s ability to handle

large and dynamic groups (as described in 3.3). We simulate
the load imposed by a large group with high churn on the
proxy infrastructure. The dynamics of the simulated group
- the arrival rate of group members and the session duration
cumulative distribution function - resemble the dynamics of
the largest event observed in a study of large-scale streaming
applications[28]. Simulation of just one such group is suffi-
cient as the load imposed varies linearly with the number of
such groups supported.

The PIAS infrastructure in the simulation has varying num-
ber of proxies and maximum group size. We simulate four
RAPs per group. We want to measure the number of mes-
sages required to keep the 2-tier membership hierarchy up-
dated in face of the group dynamics. This is the number of
messages from the JAPs of the group to the 4 RAPs and is
referred to as ’system wide messages’.

Figure 6 plots the system wide messages produced with a
proxy deployment of size 1000 and the group size bounded by
90000. The topmost curve in the figure shows how the group
size varies with the time. A flash crowd, at a rate of ∼100
members/second, leads to a sudden rise in the group size in
the first 10 minutes. The other curves plot the number of
messages produced in the corresponding minute (as plotted
along the X-axis) for varying degrees of inaccuracy. The de-
gree of inaccuracy, as explained in section 3.3, implies that a
JAP only informs a RAP of a change in the number of mem-
bers associated with it if the change is more than a certain
percentage of the last value sent.

The inaccuracy of information offers only a small benefit in
the nascent stages of the group (the first minute). This is be-
cause no matter what inaccuracy percentage we use, the JAP
must inform the RAP of the first group member that contacts
it. In the next couple of minutes, as the group increases in



size and more members join their corresponding JAPs, the
inaccuracy causes the traffic towards the 4 RAPs to drop
rapidly (see the embedded graph in figure 6). Overall, the
average number of messages over the duration of the entire
event reduces from 2300 per min. with the naive approach to
117 per min. with 50% inaccuracy.

Figure 7 plots the average system wide messages (per sec-
ond) versus the percentage of inaccuracy for varying number
of proxies and varying maximum group size. Each plotted
point is obtained by averaging across 20 runs. All curves
tend to knee around an inaccuracy mark of 50%−60%. The
closeness of the curves for different sized groups (given a fixed
number of proxies) points to the scalability of the system by
the group size even in the face of high churn.

More interesting is the variation of the load on the RAPs
with the number of proxies. As the number of proxies in-
crease, the number of JAPs increase; an offshoot of the as-
sumption that the group members are evenly distributed across
the proxy infrastructure. For a given group size, each JAP
is associated with lesser number of group members. Hence,
there is lesser benefit due to the inaccuracy approach. This
shows up as the increase in the average number of messages
directed towards the RAPs with the number of proxies.

The figure shows that such an extreme group in a 100 proxy
deployment with 100% inaccuracy would require an average
of ∼0.18 messages/second. As a contrast the same setup in
a 10000 proxy deployment would necessitate an average of
∼7.25 messages/second. The low message overhead substan-
tiates the PIAS scalability claim. Note that a larger number
of proxies implies that each proxy is a RAP for a smaller num-
ber of groups. The number of targets associated with each
proxy (as a JAP) reduces too. Thus, increasing the num-
ber of proxies would indeed reduce the overall load on the
individual proxies.

4.3 Stretch
PIAS causes packets to follow a longer path (client ⇒ IAP

⇒ JAP ⇒ target). We have argued that the combination of
native IP anycast and proxy-to-proxy latency measurements
minimizes the effect of this longer path. This section sim-
ulates the stretch introduced by PIAS along the end-to-end
path.

For the simulation, we use a subset of the actual tier-1
topology of the Internet, as mapped out in the Rocketfuel
project [16]. This subset consists of 22 ISPs, 687 POPs, and
2825 inter-POP links (details in [29]). The use of only the
tier-1 topology can be justified on two grounds. First, a large
proportion of traffic between a randomly chosen client-target
pair on the Internet would pass through a tier-1 ISP. Second,
such a simulation gives us an approximate idea about the
overhead that a PIAS deployment restricted to tier-1 ISPs
would entail.

The topology was annotated with the actual distance be-
tween POPs (in Kms) based on their geographical locations.
We then used SSFNET[30] to simulate BGP route conver-
gence. This allowed us to construct forwarding tables at each
of the POPs and hence, determine the forwarding path be-
tween any two POPs.

The simulated PIAS deployment involves placing a variable
number of proxies at random POPs, one proxy per POP.
These POPs are referred to as the proxy POPs. For every
client-target pair to be simulated, we choose a POP through
which the client’s packets enter the topology (the client
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Figure 8: Percentiles for the stretch with varying
number of proxies

POP) and a POP through which the target’s packets enter
the topology (the target POP). The forwarding paths between
the client and the target through these POPs represents the
direct path. The IAP is assumed to be in the proxy POP
closest to the client POP—this is the IAP POP. Similarly,
the JAP is in the proxy POP closest to the target POP—this
is the JAP POP. The PIAS path comprises of the following
three segments: from the client POP to the IAP POP, from
the IAP POP to the JAP POP and from the JAP POP to
the target POP.

Figure 8 plots the percentiles for the stretch with varying
number of proxies. For a given number of proxies, we simu-
lated 100000 runs. Each run comprised of simulating a client-
target pair and finding the direct and the PIAS path length
(in kms). Note that the well-documented non-optimal nature
of inter-domain routing[14] is reflected in the cases where the
PIAS path turns out to be shorter than the direct path. The
figure shows that with a deployment of just 100 proxies (a
mature deployment might encompass 50 times more POPs),
the median stretch is 1.01 with the 90th percentile being 2.2.
Hence, even with a small size deployment, PIAS performs
well with regards to the direct path.

4.4 Implementation
We have implemented the PIAS system and are in the pro-

cess of deploying it. The current implementation of PIAS
proxies comprises of a user-space component responsible for
the overlay management tasks, such as handling proxy fail-
ures, target join/leaves, health monitoring etc. and a kernel-
space component responsible for the actual forwarding of
packets through the use of Netfilter hooks[31]. This involves
tunnelling of the packets when sending them between 2 proxy
nodes, and using a NAT when handling packets to/from a
target.

5. RELATED WORK
Table 2 summarizes the pros and cons of PIAS, application

level anycast, and other related approaches described below.
Partridge et. al. [1] originally proposed the IPv4 anycast

service. It involves assigning an otherwise unicast IP address
IPA to multiple hosts, and advertising it into the routing in-
frastructure from all the hosts. Packets addressed to IPA

will be forwarded to the host nearest to the packet source in
terms of metrics used by the routing protocol. Later, IPv6
incorporated anycast into its addressing architecture[8]. It
allowed for scoped anycast addresses for groups confined to a
topological region, which does not burden the global routing
system. However, a globally spread group still poses scalabil-
ity problems. Besides, IPv6 anycast also inherits all the other



Criterion (related to goal number) IPv4 IPv6 IP + GIA App. Level i3 PIAS
Router Modification(1) No No Yes No No No
Client Modification(1) No No No No Yes No
Scalability by group size(2) Very Good Very Good Very Good Poor Poor/Good10 Good
Stretch(3) No No Little/No No Little Little
Robustness(4) No Issues No Issues No Issue Mixed Mixed Mixed11

Failover(5) Fast12 Fast12 Fast12 Fast Fast Fast
Target Deployment(6) Difficult Difficult Difficult Easy Easy Easy
Scalability by no. of groups(7) No No Yes Yes Yes Yes
Scalability by group dynamics(8) Poor Poor Poor Poor Poor/Good10 Good
Cost of Proximity(9) None None Small Large Large Small
Low-level access Yes Yes Yes No Yes Yes

Table 2: The Anycast Design Space

limitations of IPv4 anycast. Despite the shortcomings, there
has been work detailing the relevance of anycast as a tool for
service discovery and other applications, both for IPv4[32]
and for IPv6[33].

Katabi and Wroclawski[34] proposed an architecture that
allows IP anycast to scale by the number of groups. Their ap-
proach is based on the observation that services have a skewed
popularity distribution. Hence, making sure that the unpop-
ular groups do not impose any load on the routing infras-
tructure addresses the scalability issue. However, the need
to change routers puts a severe dent on the practical appeal
of the approach. Besides, being a router-based approach, it
suffers from most other limitations of IPv4 anycast.

Because of the limitations of these approaches, anycast to-
day is typically implemented at the application layer. This
offers what is essentially anycast service discovery—DNS-
based approaches use DNS redirection while URL-rewriting
approaches dynamically rewrite the URL links as part of redi-
recting a client to the appropriate server. Related proposals
in the academic community include [35][36]. The idea behind
these is to identify the group using an application level name
that, at the beginning of the communication, is mapped to the
unicast address of a group member. The reliance on unicast
support from the underlying IP layer implies that these ap-
proaches circumvent all limitations of IP anycast. The chal-
lenge here is to collect the relevant selection metrics about
the group members in an efficient and robust fashion.

Another element in this design space is anycast built on
top of the indirection architecture offered by i3[37]. i3 uses
identifiers as a layer of indirection that generically gives the
receiver tremendous control over how it may (or may not)
be reached by senders. One of the services i3 can provide is
anycast. There are two main advantages of PIAS over i3 for
the anycast service. First, PIAS requires no changes in the
protocol stack, whereas i3 requires a new layer inserted below
transport. A PIAS client, on the other hand, can use PIAS
with no changes whatsoever. Second, because PIAS uses na-
tive IP anycast, it is easier to derive proximity from PIAS
than from i3. PIAS only has to measure distances between
proxies—i3 has to measure distances to clients and targets.
The main advantage of i3 over PIAS is that it is easier to
deploy an i3 infrastructure than a PIAS infrastructure, pre-
cisely because i3 doesn’t require IP anycast. Indeed, this has

10Note that the way i3 has described their anycast, it wouldn’t
scale to very large or very dynamic groups, because a single
node holds all the targets and receives pings from the targets.
It may be possible that i3 could achieve this with a model
closer to how they do multicast, but we’re not sure.

11for reasons described in first paragraph of section 3.6
12they can be engineered to be fast by relying on IGP for
convergence

been a source of frustration for us—we can’t just stick a PIAS
proxy on Planetlab and start a service.

As far as the broader notion of indirection is concerned,
there is no question that i3 is more general. Its ability for both
the sender or receiver to chain services is very powerful. The
addressing space is essentially infinite, and hosts can create
addresses locally. Finally the security model (that supports
the chaining) is elegant and powerful. Having said that, PIAS
does provide indirection from which benefits other than just
anycast derive. For unicast communications, it could be used
to provide mobility, anonymity, DoS protection, and global
connectivity through NATs. In the best of all worlds, we’d
want something like i3 running over PIAS. But IPv6 and
NAT have taught us that you don’t always get the best of
all worlds, and considering PIAS’s backwards compatibility,
it may after all be the more compelling story.

6. ANYCAST APPLICATIONS
Given that PIAS offers an easy-to-use global IP anycast

service that combines the positive aspects of both native IP
anycast and application-layer anycast, it is interesting to con-
sider new ways in which such a service could be used.

6.1 Peer Discovery
Though IP anycast has long been regarded as a means of

service discovery, this has always been in the context of clients
finding servers. PIAS opens up discovery for P2P networks,
where not only is there no client/server distinction, but peers
must often find (and be found by) multiple peers, and those
peers can come and go rapidly. Examples of such cases in-
clude BitTorrent and network games.

One reason that traditional IP anycast has not worked for
peer discovery (other than difficulty of deployment), is that an
IP anycast group member cannot send to the group—packets
are just routed back to themselves. With the right selec-
tion characteristics, PIAS can support a wide-range of P2P
applications. Random selection would allow peers to find ar-
bitrary other peers, and is useful to insure that unstructured
P2P networks are not partitioned. Proximity is obviously also
important, but to insure that a peer can find multiple nearby
peers (rather than the same peer over and over), a selection
service whereby a node can provide a short list of targets to
exclude (i.e. already-discovered targets) could be used.

6.2 Reaching an Overlay network
A very compelling application of PIAS would allow a RON[14]

network to scale to many thousands of members, and would
allow those members to use RON not only for exchanging
packets with each other, but with any host on the Internet!
What follows is a high-level description of the approach. As-
sume a set of 50-100 RON “infrastructure” nodes that serve



many thousands of RON clients. The RON nodes all join
a large set of anycast groups—large enough that there is an
anycast transport address (TA) for every possible client con-
nection. The RON nodes also partition the anycast TAs so
that each TA maps to a single RON node. Clients discover
nearby RON nodes (or a couple of them) using one of the
anycast groups, and establish a unicast tunnel (for instance,
a VPN tunnel) with the RON node. We call this the RON
tunnel, and the RON node is referred to as the local RON.

When a client wishes to establish a connection with some
remote host on the Internet, it does so through its RON tun-
nel. The local RON assigns one of its TAs to the connec-
tion using NAT, and forwards the packet to the remote host.
When the remote host returns a packet, it reaches a nearby
RON node, called the remote RON. Because the transport
address of the return packet maps to the local RON node,
the remote RON node can identify the local RON node. The
remote RON tags the packet with its own identity, and trans-
mits the packet through the RON network to the local RON
node, which caches the identity of the remote RON, and de-
livers the packet to the client. Now subsequent packets from
the client to the remote host can also traverse the RON net-
work.

This trick isn’t limited to RONs. It could also work for
route optimization in Mobile IP13 (for v4 or v6, see [38] for a
description of the problem), or simply as a way to anonymize
traffic without sacrificing performance.

7. DISCUSSION
In this paper, we have presented the basic aspects of PIAS.

A ”practical” IP anycast service, however, requires a number
of features that we don’t have space to describe in detail. For
example, the need for scoping whereby packets from clients
in a domain (enterprise) are always served by targets within
the domain. This can be achieved by deploying a PIAS proxy
in the domain, or simply by deploying intra-domain native IP
anycast.

Another important issue is security. The IP routing infras-
tructure is secured router-by-router through human super-
vision of router configuration. This makes routing security
error-prone and unreliable. Since PIAS involves advertising
a prefix into inter-domain routing, it is afflicted by the same
issues. However, it is important to note that PIAS does not
worsen the situation. Also, the fact that from the routing
point of view, an anycasted autonomous system is akin to a
multi-homed autonomous system implies that any future so-
lution for routing security would apply directly to the PIAS
deployment.

PIAS, however, does need to explicitly secure its join and
leave primitives. The fact that these primitives are to be used
by group members who have an explicit contract with the
anycast service provider implies that we could use standard
admission control schemes; for example PIAS could adapt
any of a number of network or wireless authentication proto-
cols like EAP [39]. Previous work on using overlays to pro-
tect specific targets from DOS attacks [40] described some
approaches to allow controlled access to the overlay.

An assumption implicit in PIAS’s claim of incurring mini-
mal stretch (section 4.3) is the proximity of the client to the
IAP and of the server to the JAP. This assumption is justified
by the fact that these relations are discovered using native IP

13Details withheld for lack of space.
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Figure 9: Native IP anycast inefficiency - packets
from client C in New York destined to the native IP
anycast address are routed to the anycast server in
Berkeley, even though there is a server in New York

anycast and hence, the distances are small in terms of metrics
used by inter-domain routing. However, this does not neces-
sarily imply that the distances are small in terms of latency.
As a matter of fact, preliminary measurements done by us
show that the assumption does not hold for the j-root server
anycast deployment. We found that native IP anycast does
not do a great job of selecting close-by locations, at least not
for the j-root server deployment. For example, 40% of the
measured clients experienced a stretch of more than 4 when
accessing the anycasted j-root. The measurement methodol-
ogy and the results are detailed in [41].

We believe the inefficacy of anycast when selecting close-
by root-servers might be due to the way the j-root servers
have been deployed - all 13 anycasted servers for j-root are
placed in POPs of different ISPs. A possible problem with
this approach is illustrated in figure 9. The figure shows 2 ISP
networks- I1 and I2, each having a POP in New York and
in Berkeley. It also shows a native IP anycast deployment
(AS number J) with two servers - one hosted at the New
York POP of I2 (I2-NY) and the other at the Berkeley POP
of I1 (I1-B). The figure has these POPs highlighted. The
anycast servers have an EBGP relation with the routers of
the hosting POP; hence, the anycast prefix is advertised with
J as the origin AS. Now, if a client (C) in the New York area
sends packets to the anycast address and these reach POP I1-
NY, they will be routed to the server hosted at I1-B. This is
because the routers in I1-NY would prefer the 1 AS-hop path
([J]) through I1-B to the anycasted server over the 2 AS-hop
path ([I2,J]) through I2-NY. Note that the anycasted server
hosted at I1-B represents a customer of I1 and so, it would be
very uncommon for I1 to steer these packets towards I2-NY
due to local policies (local preference values); rather the AS
path length would dictate the path.

Although negative, the importance of the result cannot be
overemphasized. It brings out the fact that a naive proxy de-
ployment might not achieve low-latency client-IAP and JAP-
target paths. Also, an unverified implication of the above
analysis is that for good performance, an ISP that is part
of the deployment14 should be sufficiently covered, i.e., there
should be clusters at a decent number of POPs of the ISP.
For example, deployment of the two servers in the figure at
both of the POPs of I1 (I1-NY and I1-B) or I2 (I2-NY and
I2-B) would avoid the problem of long paths. We believe that
such an approach would ensure that the client-IAP and the
target-JAP segments are latency-wise small - something that
can only be substantiated when we get the PIAS deployment
going

14the ISP has at least one POP hosting a proxy cluster



8. CONCLUSIONS
In this paper, we propose a proxy based IP anycast service

that addresses most of the limitations of native IP anycast.
Specifically, the primary contribution of this paper is the de-
sign of PIAS, a practically deployable IP anycast architec-
ture. The unique features of PIAS such as the scalability by
the size and dynamics of groups mean that it opens up new
avenues of anycast usage. The purported scalability has been
substantiated through simulations representing extreme, but
real, workloads. Simulations on the real tier-1 topology of
the Internet point to the efficiency of our approach.

The fact that PIAS uses native IP anycast means that it
can be used as a simple and general means of discovery and
bootstrapping. Internet measurements against the anycasted
DNS root servers show that the reliance on native IP anycast
does not undermine PIAS’s ability to support connection ori-
ented services. A PIAS prototype has been built and the de-
ployment efforts are underway. We feel confident that PIAS
has the potential of fulfilling the need for a generic Internet-
wide anycast service that can serve as a building block of
many applications, both old and new.
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