Homework #1: Running Click on Emulab*

This homework assignment has three questions, each with several parts. Answer them as clearly
and concisely as possible. You are welcome to work with one other partner on this assignment if you
want, provided you (1) write up your own answers to the questions and (2) include the name of your
partner in your write-up. Your write-up should include any Tcl scripts and Click configurations you
used to set up your experiments. Turn in your solutions by 11:59pm on September 30, 2008 via
e-mail with the subject “CS 561 Assignment #1” and a single PDF attachment.

This problem will give you hand-on experience with Layer 2 and Layer 3 protocols, and with
setting up network experiments in Emulab. The experimental configuration language is based on
Tecl, which is the same as that which is used for ns, a network simulator.

Setting Up Your Experiment

1. Emulab: Go to http://www.emulab.net and request an account. Join project ‘GradNet-
works’. Do this early, as your membership will need to be approved!

2. Topology setup: Write a Tcl procedure that takes an integer n and creates the experiment
configuration (i.e., an ns file) for a dumb-bell topology (with two nodes, each connected to n
hosts) as shown in the figure below for n = 3. You can test your code on Emulab or in ns.
Make all “edge” links in the topology be duplex links with 100Mbps of bandwidth and a 10ms
propagation delay, except for the link between the nodes switchl and switch2 which is a duplex
link with 1Mbps of bandwidth and 10ms propagation delay. Name the nodes as in the Figure,
as we will be using them in later parts of this problem.

| switchl —— switch?2

Hint: Reading Emulab and ns documentation will help with this problem.

*Based heavily on an assignment created by Professor Nick Feamster at Georgia Tech.



3. Topology creation: Create your topology in Emulab. You can use the Emulab interface to
get the DNS names and IP addresses of each of the nodes in your topology. By default, Emulab
installs FreeBSD on each node; please use Emulab’s tb-set-node-os to install Linux instead.

We will now experiment on the nodes themselves.

Fun with ARP and Click

1. Installing your own switch: In this part of the problem, you’ll enable all of the hosts to
reach each other through the switches. Fortunately for you, Click already has an EtherSwitch
element, so most of the “hard work” is done. You just have to figure out how to set it up!

(a) Download, compile, and install the Click (http://www.read.cs.ucla.edu/click/) mod-
ular router, in user space, on switchl and switch2 in your topology. Possibly helpful hint:
To save yourself the trouble of compiling Click on the nodes themselves, you can compile
on a (possibly faster) local Linux machine, and then copy the binary over to switch! and
switch2.

(b) Install and configure the Click elements on switch! and switch2. The EtherSwitch element
will likely be quite helpful for you in this regard; ListenEtherSwitch might also be
helpful, particularly for debugging.

(c) An Ethernet interface card in a conventional end host (e.g., a Linux or Windows machine)
discards unicast frames that are not destined to its own MAC address. (Explain why.)
What change do you need to make to the Click configuration to allow the switches in your
topology (i.e., the Linux machines running the EtherSwitch element) to handle packets
destined to other locations?

(d) Make that change, and then verify that host! can ping host2 and host4. Include the
outputs of ping in your report.

2. Monitoring ARP traffic and dumping forwarding tables:

Log into host5 and host3 and start a tcpdump on each machine that looks for ARP packets.
Log into hostl and begin pinging hosts.

Show the packet-trace excerpts for any ARP queries or responses. Explain what you see.
Show a dump of the forwarding tables of switchl and switch2. (How did you dump the
table? Explain how each of the entries got there.)

(e) What are the privacy implications of ARP flooding? Why do some enterprise networks
disallow users from running tcpdump, even on their own computers?

3. Measuring failure and recovery time:

(a) Modify your experiment set-up so that the interface on host5 (connecting hosts to switch?2)
fails. Explain how you did this, and describe one other way you might have simulated
this kind of failure.

(b) Send repeated ping packets to hosts. How long does it take before switchl’s forwarding-
table entry for host5 expires? (How can you detect this by monitoring the ping packets?)

(c) Reinstate the link. How long does it take before host5 begins responding to pings after
the link recovers?



