PRINCETON UNIV. F’08 co0s 521: ADVANCED ALGORITHM DESIGN

Lecture 4: Competitive analysis of data structures

Scribe: Rong Ge

Lecturer: Sanjeev Arora

1 Introduction

1.1 Competitive Ratio

In the last lecture we gave the definition of competitive ratio for data structures, and showed
a simple Move-To-Front algorithm that achieves competitive ratio 2 in the linked list model.
Recall that competitive ratio is defined as

DEFINITION 1 (COMPETITIVE RATIO) An algorithm A has a competitive ratio of o if for
all sequence of operations o, we have

COSTu(c) < aCOSTopr(0) (1)

where COSTA(0) is the cost of algorithm A on the sequence o, and COSTopr (o) is the
cost of the best algorithm for the same sequence.

1.2 BST model

Today we are going to apply competitive analysis on binary search trees. In the binary
search tree model (shown in figure 1), each node v has a key k, all nodes that are in the
left subtree of v has keys smaller or equal to &k, and nodes that are in the right subtree of v
has keys larger than k. The cost of following pointers in the tree and performing rotations
are all constants.

subtree subtree

Key <K KQV > K

Figure 1: Binary Search Trees

The operations that binary search tree supports include INSERT, DELETE and
FIND.

Splay Tree [ST85] is conjectured to have competitive ratio O(1), but the best bound
known is only O(logn). Recently, [DHIPO7] proposed a new data structure Tango Tree that
has a competitive ratio O(loglogn).

1.3 Interleave Bound

One of the difficulties in proving competitive ratio upperbounds is that we do not know
how the optimal algorithm works. To solve this problem, we first come up with some
lowerbound IL(o) such that Vo COSTopr(o) > IL(0), then show that COSTranco(o) <
O(loglogn) - IL(0).

In this lecture, we assume for simplicity that the request sequence consists only of
FIND’s. 1t is easy to extend the result when we allow INSERT and DELETE. Now
we may as well assume for notational ease that the set of keys is {1,2,...,n} because the
BST’s structure only depends upon the comparison results between the keys. Let o =
(01,02,03,...) be a sequence of FIND operations.

We define P as the static complete binary search tree on the set {1,2,...,n}. For
computing IL, we maintain a bit M R[i] for each i € {1,2,...,n}, where MR stands for
“Most Recent”.

MRJi] = 1 iff the most recent FIND operation that was routed through node i in P
went to its right subtree.

Since P is a complete binary search tree, for each single FIND operation, there’s at
most [logn] changes in MR values.

DEFINITION 2 (INTERLEAVE BOUND) IL(0) = Total number of changes in MR bits while
performing the FIN D operations in o.

Wilber [Wil89] showed the following algorithm that states IL is a lowerbound for
COSTopr(o).

THEOREM 1

COSTopr(o) = AIL(o)) (2)

We will show the proof of this theorem later.

2 Tango Tree Description

2.1 Tango Tree Structure

Now we specify the structure of Tango Trees using the binary search tree P and MR bits.
First we define the notion of Prefered Path

DEFINITION 3 (PREFERED PATH) Prefered Path (Figure 2) is the path descending from
root to a leaf following the MR bits. (that is, going left when MR=0 and right when MR=1)

It’s easy to see that by removing the edges in Prefered Path from the tree P, we get a
disjoint union of [logn| subtrees. Using these subtrees, we can define PP-Decomposition
PPD(T) for a tree T recursively

Prefered
Path

O

Figure 2: Prefered Path

DEFINITION 4 (PP DECOMPOSITION)

PPD(T) = {PreferedPath(T)} U PP-Decomposition for trees in {T — PreferedPath(T)}
3)

Recall the fact that Red-Black Trees can support INSERT, DELETE, FIND in
O(log k) time, where k is the number of nodes in the tree. Using Red-Black Trees, we
define Tango Tree recursively

DEFINITION 5 (TANGO TREE) A Tango Tree (Figure 3) is a binary search tree in which
we store the nodes in Prefered Path in a Red-Black Tree, and “Hang” Tango Trees for the
[logn]| subtrees in the appropriate places in this Red-Black Tree.

log 1Og " RB-Tree for

Prefered Path
(log n nodes)

Hanged”

ango Subree

Figure 3: Tango Tree Structure

2.2 FIND operations for Tango Tree

When a FIND opperation happens, the MR bits may change. The changes in MR bits
will cause PP-Decomposition to change. How do we update tango tree?

In fact, it is possible to do it in time O(loglogn) - #changes in MR bits. To do this, we
need to store auxiliary information Dep, MinDep and MaxzDep in the nodes of Red-Black
tree. The Dep value for a node is the depth of the node in the static tree P; the MinDep
value for a node is the minimum value of Dep among its children; the MaxDep value is the
maximum value of Dep among its children. Maintaining these auxiliary values do not effect
the complexity of Red-Black Tree operations (see [CLRS01, chaptor 14]) We also claim that
in Red-Black Trees, we can do the following SPLIT and MERGE operations in O(log k)
time where k& is the number of nodes (see [CLRS01, Problem 13-2]).

DEFINITION 6 (SPLIT AND MERGE) SPLIT(T,x), where T is a Red-Black Tree and x
18 a node in the tree, splits the tree into two Red-Black Trees where one tree includes all the
nodes that has key < x; the other tree includes all the nodes that has key > x.

MERGE(Ty,Ts,x), where Th is a RB Tree whose nodes have key < x, T is a RB Tree
whose nodes have key > x, merge the two trees into a single RB Tree, which contains all
nodes in T, Ty and a node with key = x.

Observe that each prefered path in the PP-Decomposition involves a contiguous interval
of depths (actually, it involves depths in the interval [¢,log n] where ¢ is the minimum depth).
Using the SPLIT and MERGE operations, we claim that given a depth d, we can cut the
nodes whose Dep > d in a Red-Black Tree. Also, we can join two Red-Black trees where
one only contains nodes with Dep > d, and we have performed a cut to the other tree so
that its Dep > d nodes are all lost.

The key observation here is in Red-Black Tree of any path, the keys of nodes that have
Dep > d form an interval [[,r] (because they are the intersection of a subtree of P and
the path). We can find the nodes with keys [and r following informations in MinDep
and MaxDep. Then we find the predecessor I’ of [and the successor r’ of r. All of these
operations takes O(log k) time in Red-Black Tree.

To do cut, we do a SPLIT at I’ and then SPLIT at r’. Then we have a tree whose
nodes have I’ < key < r’ and is therefore all the nodes with Dep > d. We mark this tree
has “hanged” and then do M ERGE at r’' and I’ respectively to finish cut operation. (The
whole procedure is shown in Figure 4)

Join is similar with cut. Suppose A is the tree with nodes Dep > d, B is the tree that
do not have nodes with Dep > d. Observe that the key values in A must falls in between
two adjacent keys I’ and 7’ in B, we can do SPLIT at this two points, and then do two
MERGEs to join A and B.

Now for FIND(o), assume there are m changes in MR bits, we can break the path
from root of P to o in m + 1 segments, each of which lies in the same path in the previous
PP-Decomposition. Within each sigment, we can find the depth d that we should do cut
and join in O(loglogn) time (just find adjacent [and r so that [< o < r and then d should
be the larger value between Depll] and Dep[r]), we perform the cut and then join with the
Tango Tree previously “hanged” there (these steps also take O(loglogn) time). In this way
we can find ¢ and change the structure of Tango Tree according to changes in MR bits in
O(loglogn) - (m + 1) time, which infers

© ®
AN\ SPLIT(AD) o\ SPLIT(C.r ()
®@ VNN

mark D as “Hanged”

© @

/ MERGE(®,E,r') @
[N

Figure 4: Implementing cut operation

A MERGE(B,C,l')

OO\ /B

THEOREM 2

COSTranco(o) < O(loglogn) - IL(0) (4)

3 Proof of IL lowerbound

3.1 Prefix Sum Problem

To prove that IL is a lowerbound for the cost of maintaining binary search tree, we reduce
the cost of maintaining binary search tree for operations o to the cost of solving a certain
instance ¢’ of Prefix Sum Problem.

We would like to show COSTopr/(0') = O(COSTopr(o)) and COSTopr (0') = Q(IL(0))
where ¢’ is an instance of Prefix Sum Problem created according to o, and OPT" is the
optimal algorithm for solving that problem.

New we define Prefix Sum problem

DEFINITION 7 (PREFIX SUM PROBLEM) Maintain n registers A[l..n] that support oppera-
tions UPDATE and PREFIXSUM.

UPDATE(i,A) updates Afi] = A

PREFIXSUM/(i) returns the current value of ¥1<j<;A[j].

To relate binary search tree problem with prefix sum, we construct ¢’ as follows

o = (UPDATE(c1,Ay), PREFIXSUM (01),UPDATE (03, Ay), PREFIXSUM (03), ...)
(5)

Using binary search trees with auxiliary information (store the sum of A values in
subtree), we can solve Prefix Sum problem. This infers

LEMMA 3

COSTopr(0') = O(COSTopr(0)) (6)

A; are just variables; it is not important to assign specific values to them. Note that we
can perform additions in a semigroup, so we have to carefully describe the computational
model so that the algorithm gain bennefit by using tricks with this auxiliary computation.

DEFINITION 8 (SEMIGROUP MODEL) Semigroup Model allows an arbitrary number of auz-
iliary variables REG(j| and two kinds of operations:

REG]j| < A; and REG[k] «<— REG[i]| + REG][j]

FEach operation cost 1 unit.

Since we have an arbitrary number of REG, we can assume that each register is written
only once. Also, following the definition of the model, we can see that at each step, every
REG value is a sum of past Ay’s.

DEFINITION 9 (SIGNATURE) If REG = Ay, + Ay, + -+ + Ay, then the signature of this
register Sig|Reg] = (x,y), where

x is the largest index among oy, , 04y, , 0
y is the largest time among t1,te, - ,1;
12 m n
o o o ° o » node
Lo
2
T sigll
t o
Siglsl siglh]
time
\

Figure 5: Query-Time Diagram and Signature

If REG[k] < REG|l]+ REG]|s|, then sig[l] and sig[s] all have coodinates no larger than
sig[k]. In the Query-Time Diagram (Figure 5), this means that sig[s] and sig[l] are all in
the rectangle of sig[k].

For an operation REG[k] < REG][l|+ REG]|s|, we say that a node v in the static binary
search tree P owns it if sig[l]; € [a,b] and sig[s]1 € (b, c]. Where [a,]] is the range of keys
of v’s left subtree, and (b,] is the range of keys of v’s right subtree. Notice that every such
operation is owned by exactly one node in P (that is, the least common ancester of the two
signature’s first component). So we have

#operations = X, #operations owned by v (7)
So if we can prove the following lemma, we would be able to complete the proof.
LEMMA 4

The number of operations owned by v is at least the number of times MR[v] changes from
0to 1

(Utw tQ)

Figure 6: Query-Time Diagram for Proving Lemma 4

The proof is shown in Figure 6. t2 is a time that M R[v] changed from 0 to 1. ¢; is the
last time when there is a query in [a,b]. We want to show that there exist an operation
in time [¢1,t2] that is owned by v. Because of semigroup property, we observe that the
answer to PREFIXSUM (o4,) must come from a register whose signature is (o, ,t1); also
the answer to PREFIXSUM (ot,) must come from a register whose signature is (oy,, t2).

If there’s no operation of the desired type during interval [t1,ts], then there is no way
that the answer of PREFIXSUM/ oy,) to be correct because the answer will be irrelevant
to Atl .

In conclusion, we have proved COSTppr/(0') = Q(IL(0)), together with Lemma 3, we
proved Theorem 1.

References

[DHIPO07] Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patragcu. Dynamic
optimality—almost. SIAM J. Comput., 37(1):240-251, 2007.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. J. ACM, 32(3):652—686, 1985.

[Wil89] R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM
J. Comput., 18(1):56-67, 1989.

