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This lecture is devoted to two independent topics on algorithms.

1 Distributed Computing

Distributed computing deals with situations where there is no unique computing center,
but there are many centers where computation happens, and these centers should compute
something together. For instance, on aircraft there are many sensors of different kind that
should agree on what is happening around, or there is distributed network that wants for
instance to agree on time.

We consider the following example from this wide area.

1.1 Byzantine Generals Problem

The problem is as follows [2]: there are n processors, t of which may be faulty and all the
rest are good. Each processor i keeps a bit bi ∈ {0, 1}. Every processor can send its bit
to every other processor, as well as can ask other processor about its bit. Good processors
always answer honestly, while faulty processors may answer arbitrarily to different requests.
The problem is to give a protocol such that:

• at the end all good processors agree on some bit;

• if all good processors in the beginning have the same bit b, then the bit they agree on
should be b.

Some observations/facts:

1. If t ! n/3, then there is no such a protocol (consider the simplest case of three
processors with one faulty processor).

2. The simple majority protocol, that is, everybody asks bits from everyone and then
takes the majority, does not work (consider the situation with one faulty processor
and all others divided equally on having 0 and 1).

3. There exists a deterministic polynomial time algorithm that solves the problem for
t < n/3 (this is difficult).

1.2 Rabin’s Randomized Algorithm

We describe a simple randomized algorithm due to Rabin [3] which assumes that there is a
global random coin that when tossed, is visible to all processors.

Let n = 3t + 1. The processors maintain a bit vote which is initially bi for processor i.
Let N be some natural number. The algorithm for each processor is the following.
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Do N times:

1. Send vote value to every other processor.

2. Examine all n values of vote received (including your own). Identify maj =
the majority bit among these values and tally = the number of times
you saw maj bit among the vote values. (Notice that the values of maj
and tally can vary widely among the processors, since faulty processors
could try to confuse things by sending different values of vote to different
processors.)

3. If tally ! 2t + 1, then set vote = maj.

4. If tally " 2t, then look at the current global coin toss. If it is “Heads”,
then set vote = 1, else set vote = 0.

Proof of correctness. Note that if all the good processors have the same initial value, then
they all set their votes to this value in the first round. In all other cases, we show that
with probability at least 1/2, all the processors assign the same value to vote. (Note that
as soon as this happens, then always tally ! 2t + 1 for all processors, and therefore all
processors will continue executing step 3 in the algorithm.)

There are two cases.

1. Some processor has tally ! 2t + 1, and maj = b for some b ∈ {0, 1}. Since only t
processors are faulty, we conclude that at least t + 1 good processors must have sent
b as their value of vote. Thus no other processor will see both tally ! 2t + 1 and
maj = 1 − b in the same round. Hence regardless of whether the other processors
execute step 3 or 4 in the above algorithm, the probability is at least 1/2 that they
all set vote to b.

2. No good processor has tally ! 2t + 1. Then all of them execute step 4, and with
probability 1 set vote to the same value.

Thus after N steps with probability at least 1 − 1

2N all processors successfully agree on
some bit. !

2 Streaming Algorithms and Algorithms for Large Data Set

The general situation here is that the data we are given is so large that we even do not
have enough space to store it. Nevertheless we have an access to the data stream and want
to compute something about the data on a fly. Examples are some astronomic telescope
systems data, particle acceleration data. With Internet it is still not the case, since it is
much smaller compared with the former examples of data.

2.1 Computing Frequency Moments

As an example, we consider the following problem from streaming algorithms. We are given
a stream of data. Each data item has some type from the set {1, . . . , n}. Let mi be the
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number of times the item of type i appeared so far in the stream. Let

Fk =
n

∑

i=1

mk
i

to be the frequency moments of a data stream. The goal is to compute Fk for k = 1, 2, . . .
It is easy to compute F1 keeping a counter and incrementing it after each new item

appears. This requires O(log N) space where N = F1 is the length of the data stream.
How can we compute F2? A trivial approach is to maintain a counter for each mi, but that
requires O(n log N) space which might be too large.

Now we describe a (1+δ)-approximation algorithm for computing F2 that requires much
less space [1].

The idea is to use 4-wise independent random variables ε1, . . . , εn ∈ {−1, 1} with E[εi] =
0 for every i. Recall that random variables ε1, . . . , εn are k-wise independent if every k of
them are truly independent. If random variables are k-wise independent, then they are l-wise
independent for every l < k. To construct k-wise independent variables, one is sufficient to
use O(k log n) truly independent random bits (take values of a random k-degree polynomial
modulo 2 and adjust to the range {−1, 1}).

The algorithm is as follows. In the beginning let counter = 0. Then whenever an item
of type i appears in the stream, set counter ← counter + εi. Thus at the end we have
counter =

∑n
i=1

miεi. Output x = (counter)2.
We have

E[x] = E

[(

∑

i

miεi

)]

= E





∑
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=
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i,j
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∑

i,j
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∑

i

m2
i ,

where the last equality follows from the fact that εi and εj are pairwise independent for
i $= j. That is, the average of x is what we wanted to get.

Furthermore,

Var[x] = E[x2] − (E[x])2 = E
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where we used the fact that E[εi1εi2εi3εi4 ] = 0 if any of indices it appears here odd number
of times.

Hence, we have
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2 .

The variance is quite large, but we can reduce it by repeated sampling. Take T inde-
pendent copies x1, . . . , xT of x, that is, obtained from T different independent blocks (εi)n

i=1

of random variables. Let Y =
∑T

i=1
xi. Then E[Y ] = T E[x] = TF2 and Var[Y ] = 2TF 2

2 ,
since xi are independent.

By Chebyshev’s inequality,

Y/T ≈ O

(

F2 ±
√

2TF2

T

)

,

therefore to get a (1± δ)-approximation, we are sufficient to take T ! 2/δ2. This procedure
requires O(1

δ log n) space.
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