PRINCETON UNIVERSITY]	F'08 $\cos 521$:	Advanced	Algorithms
Homework 4			
Out: <i>Dec 17</i>			Due: Jan 6

You can collaborate with your classmates, but be sure to list your collaborators with your answer. If you get help from a published source (book, paper etc.), cite that. Also, limit your answers to one page or less —you just need to give enough detail to convince me. If you suspect a problem is open, just say so and give reasons for your suspicion.

- §1 Show that no deterministic algorithm can solve the *byzantine generals problem* when the number of players is three and one of them is malicious.
- §2 The algorithm for the *byzantine generals problem* given in class works with high probability but we did not describe how the players can detect when it works. Modify the algorithm so they can.
- §3 In class we analyzed an estimator for the second frequency moment $F_2 = \sum_i m_i^2$ where m_i is the number of copies of element *i* in the data stream. Here the basic form of the estimator consisted of a counter $C = \sum_i \epsilon_i m_i$ (where $\epsilon_i \in \{-1, +1\}$) and the estimator value was C^2 . A number of independent copies of this estimator were required to obtain a good estimate with high probability. Consider the following variant to estimate $F_3 = \sum_i m_i^3$. Maintain a counter $C = \sum_i \epsilon_i x_i$ where x_i is picked uniformly and randomly from $\{1, \omega, \omega^2\}$ (where ω is a complex cube root of unity). For purposes of this question ignore issues of independence in the choices of ϵ_i and assume they are picked independently. Show that the expected value of C^3 is F_3 .
- §4 Let $d: X \times X \to \Re^+ \cup \{0\}$ be a metric on a point set X. We say that *embeds with distortion* C into another metric d_2 on point set X_2 if there is a mapping $f: X \to X_2$ such that

 $\forall x, y \in X \qquad d_2(f(x), f(y)) \le d(x, y) \le Cd_2(f(x), f(y)).$

Find the smallest C such that the *n*-point metric defined by the *n*-cycle embeds with distortion C into \Re^n with Euclidean norm.