1. Consider the language PUZZLE defined in Prob. 7.26 (of both the old and new editions of the book). Now consider a two player version – each player starts with an ordered stack of puzzle cards. The players take turns placing the cards in order in the box and may choose which side faces up. Player I wins if, in the final stack, all hole positions are blocked, and Player II wins if some hole position remains unblocked. Show that the problem of determining which player has a winning strategy for a given starting configuration of the cards is \text{PSPACE}-complete.

2. Show that A_{NFA} (the problem of deciding if an NFA accepts a given string) is \text{NL}-complete.

3. Let $UPATH$ be the analogue of $PATH$ for undirected graphs. Let $BIPARTITE$ be the problem of deciding if a graph is bipartite (i.e., it can be colored using two colors such that no two adjacent vertices get the same color).

Show that $BIPARTITE \leq_L UPATH$. Recall that in the precept it was mentioned that $UPATH$ is in L, consequently $BIPARTITE$ is in L.

4. Show that if $NP = P^{SAT}$, then $NP = coNP$.

5. Consider the function $\text{pad} : \Sigma^* \times N \rightarrow \Sigma^* \#^*$ that is defined as follows. Let $\text{pad}(s, l) := s\#^j$, where $j = \max(0, l - m)$ and m is the length of s. Thus $\text{pad}(s, l)$ simply adds enough copies of the new symbol $\#$ to the end of s so that the length of the result is at least l. For any language A and function $f : N \rightarrow N$, define the language $\text{pad}(A, f(m))$ as

$$\text{pad}(A, f(m)) := \{\text{pad}(s, f(m)) : \text{ where } s \in A \text{ and } m \text{ is the length of } s\}$$

(a) (Warmup) Prove that if $A \in \text{TIME}(n^6)$ then $\text{pad}(A, n^2) \in \text{TIME}(n^3)$.

(b) Prove that, if $\text{NEXPTIME} \neq \text{EXPTIME}$, then $P \neq NP$. \textit{Hint (surprise!)}: Use padding.

6. Define the \textbf{unique-sat} problem to be

$$USAT := \{\phi : \phi \text{ is a boolean formula that has a single satisfying assignment}\}$$

Show that $USAT \in P^{SAT}$.

7. Suppose that A and B are two oracles. One of them is an oracle for $TQBF$, but you don’t know which. Give an algorithm that has access to both A and B and that is guaranteed to solve $TQBF$ in polynomial time.
8. Let \textsc{Halt} denote the halting problem. Show that $\text{PHalt} = \text{NPHalt}$. (i.e., a deterministic machine is as powerful as a non-deterministic one if they both have access to an oracle for the Halting problem).