
CS 441 Programming Languages

Assignment #7

Due: Friday, 12 December 2008 (by midnight)

Preamble

In this assignment, there is a programming part and a theory part. You may do the programming part
either individually or in pairs. If you work in pairs, each member of the pair will receive the same grade for
the program. When you email your program files to Rob (rdockins@cs.princeton.edu), you should include
in the email the names of all who contributed to the program.

Each person must write up and hand in the answers to the theory questions individually. You may toss
around ideas with your classmates about the problems but you need to write up the end results yourself.

You have two weeks to complete the assignment. (Try not to leave it all to the very end!)

Type Soundness for Existential and Universal Polymorphism

Consider the lambda calculus with universal and existential types as we studied in class:

Types τ ::= int | τ1 ∗ τ2 | τ1 → τ2 | α | ∀α.τ | ∃α.τ

Values v ::= n | λx:τ.e | (v1, v2) | Λα.e | pack[τ, v] as ∃α.τ ′

Expressions e ::= x | v | e1 + e2 | e1 e2 | (e1, e2) | π1e | π2e | e [τ ] | unpack α, x = e1 in e2

Recall that π1e and π2e are expressions for projecting the first and second components of a pair respec-
tively. We present the typing rules for the key expressions below (we omit rules for numbers, pairs and ordi-
nary value functions – you’ve seen those before). Remember, ∆ is a set of type variables (∆ = α1, α2, . . . , αk)
and Γ is a function from value variables to their types (Γ = x1:τ1, x2:τ2, . . . , xm:τm). Also remember that
∆ ` τ means that the free type variables of τ are a subset ∆. (Note also that this is sometimes called a
“well-formedness” judgement for types and hence I decided to begin the rule names with WF.)
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Typing Judgement Form I: ∆ ` τ

α ∈ ∆
∆ ` α

(WFvar)
∆ ` int

(WFint)

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2
(WFarrow)

∆ ` τ1 ∆ ` τ2

∆ ` τ1 ∗ τ2
(WFpair)

∆, α ` τ

∆ ` ∀α.τ
(WFall)

∆, α ` τ

∆ ` ∃α.τ
(WFexists)

Typing Judgement Form II: ∆; Γ ` e : τ

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
(Tforall)

∆ ` τ ∆; Γ ` e : ∀α.τ ′

∆; Γ ` e [τ ] : τ ′[τ/α]
(Ttyapp)

∆ ` τ ∆ ` ∃α.τ ′ ∆; Γ ` e : τ ′[τ/α]
∆; Γ ` pack[τ, e] as ∃α.τ ′ : ∃α.τ ′ (Tpack)

∆; Γ ` e1 : ∃α.τ ′ ∆, α; Γ, x:τ ′ ` e2 : τ

∆; Γ ` unpack α, x = e1 in e2 : τ
(Tunpack)

And now, the operational rules:
Judgement form: e −→ e′

e −→ e′

e [τ ] −→ e′ [τ ]
(OStyapp1)

(Λα.e) [τ ] −→ e[τ/α]
(OStyapp2)

e −→ e′

pack[τ, e] as ∃α.τ ′ −→ pack[τ, e′] as ∃α.τ ′ (OSpack)

e1 −→ e′
1

unpack α, x = e1 in e2 −→ unpack α, x = e′
1 in e2

(OSunpack1)

unpack α, x = (pack[τ, v] as ∃α.τ ′) in e2 −→ e2[τ/α][v/x]
(OSunpack2)

Q. 1 [2 Points] Write down a typing derivation, excluding the derivations for judgements with the form
∆ ` τ , for the following function, which creates a polymorphic function and then applies it to an integer
argument:

(((Λα.
λf:α → α.

λx:α.f x) [int]) (λy:int.y+1)) 7
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Q. 2 [2 Points] Here is an ML signature:

sig
type complex
val toComplex : int * int -> complex
val fromComplex : complex -> int * int
val add : complex * complex -> complex

end

Part (a) [1 point] Write the existential type that corresponds to the signature above.
Part (b) [1 point] Write down a lambda calculus expression that implements the signature given above.

Your expression must have the existential type you gave for part (a) (you don’t have to down write the
complete derivation – just convince yourself you’ve done it correctly).

Q. 3 [2 Points] Write down the full statement of the canonical forms lemma for the language given above.

Q. 4 [4 Points] Prove the cases of the Progress lemma that involve existential types.

Progress: If ·; · ` e : τ then either (a) e is a value v, or (b) e −→ e′ for some expression e′.

The proof is by inducntion on the structure of the typing derivation ·; · ` e : τ . You should assume
the canonical forms lemma you stated in the previous question has been proven for you already. You must
complete the following cases:

case:

· ` τ · ` ∃α.τ ′ ·; · ` e : τ ′[τ/α]
·; · ` pack[τ, e] as ∃α.τ ′ : ∃α.τ ′ (Tpack)

...

case:

·; · ` e1 : ∃α.τ ′ α;x:τ ′ ` e2 : τ

·; · ` unpack α, x = e1 in e2 : τ
(Tunpack)

...

Q. 5 [4 Points] Since the operational semantics of our language involves substitution for type variables,
proving type preservation requires not only a value substitution but also a type substitution lemma. Here
are statements of the two lemmas:

Type Substitution: If ∆, α; Γ ` e : τ and ∆ ` τ ′ then ∆; Γ[τ ′/α] ` e[τ ′/α] : τ [τ ′/α].

Value Substitution: If ∆; Γ, x : τ ′ ` e : τ and ∆;Γ ` v : τ ′ then ∆; Γ ` e[v/x] : τ .

Assuming these two lemmas have already been proven for you, prove the cases for the type preservation
lemma that involve universal polymorphic types.

Type Preservation: If ·; · ` e : τ and e −→ e′ then ·; · ` e′ : τ .

The proof is by induction on the operational derivation. Here are the cases you are required to complete:
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case:

(p1) e1 −→ e′
1

e1 [τ ′] −→ e′
1 [τ ′]

(OStyapp1)

(1) ·; · ` e1 [τ ′] : τ (By Assumption)
...

Must prove: ·; · ` e′
1 [τ ′] : τ

case:

(Λα.e1) [τ ′] −→ e1[τ ′/α]
(OStyapp2)

(1) ·; · ` (Λα.e1) [τ ′] : τ (By Assumption)

...

Must prove: ·; · ` e1[τ ′/α] : τ

Implementation

Q 6. [12 points] You will implement a type checker for the subset of the language studied in the previous
sections that includes integers, functions and universal polymorphism. Here is the formal syntax of the
language:

Types τ ::= int | τ1 → τ2 | α | ∀α.τ

Expressions e ::= x | n | e1 + e2 | λx:τ.e | Λα.e | e1 e2 | e [τ ]

Your implementation should extend the file polylam.sml. The main challenge will be to implement these
three key functions for the language:

(* implements type equality;
return true if t1 and t2 are alpha-equivalent types *)

fun tyeq (t1:typ) (t2:typ) : bool = raise NotImplemented

(* implements the judgement D |- t *)
fun wellformedty (D:delta) (t:typ) : bool = raise NotImplemented

(* implements the judgement D;G |- e : t *)
fun typecheck (D:delta) (G:gamma) (e:exp) : typ = raise NotImplemented

The tyeq functions should implement the alpha-equivalence relation for types. In other words, tyeq
should report that the types ∀α.α → α and ∀β.β → β are equal. The tyeq function can then be used when
implementing the type checking function typecheck. In particular, the implementation of a rule such as the
rule for function application will use tyeq as a subroutine. As a reminder, here is the type application rule:

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2
(Tapp)

Notice that the rule says e1 is expected to have type τ1 → τ2 and e2 is expected to have the type τ1.
Implicitly, since we use the same meta-variable (τ1) in two different places in the rule, we are expecting the
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types in those two places to be “equal.” “Equal” in this case means syntactically identical up to renaming
of bound type variables (i.e., we are implicitly checking for alpha-equivalence of types in these rules).

The precise rules for alpha-equivalence of types are presented in the appendix at the end of the assignment.
The most interesting part of the equivalence relation involves the case for universal polymorphism since that
case involves a bound type variable. The way to check if ∀α.τ1 is equivalent to ∀β.τ2 is to pick some new
variable α1 (using the freshvar function provided to you) and to check if τ1[α1/α] is alpha-equivalent to
τ2[α1/β].

Checking alpha-equivalence of other types is fairly easy. For example, two type variables are only equal
if they are the same variable. The integer type int is only equal to the integer type int – not to any other
type. Note in particular that int is not alpha-equivalent to a type variable α. (We are checking for alpha-
equality, which is quite different from doing unification, which is a technique used in in our type inference
algorithm.) The type τ1 → τ2 is alpha-equivalent to τ ′

1 → τ ′
2 if and only if τ1 is alpha-equivalent to τ ′

1 and if
τ2 is alpha-equivalent to τ ′

2.
In addition to alpha-equivalence, there is one other slight twist in our implementation. That is that we

will implement the context Γ as a list of variable-type pairs. To add to Γ (such as in the rule for typing
functions), we will put a new variable on the front of the list (use the update function provided to you). To
find the type associated with a variable, scan the list from front to back, stopping when you find the first
occurrence of the variable in question (use the lookup function provided to you). If you do this, you can
actually add the same variable to the context twice and the lookup function will find the last one added,
which will result in the correct behavior.1

A complete set of type checking rules is provided for your reference in the appendix, starting on the
following page.

1Treating contexts as ordered lists like this is an alternative to explicitly alpha-varying bound value variables to make them
different from the value variables that already appear in the context, as the typing rules technically require.
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Appendix: Type Checking Rules for Implementation

τ1 ≡ τ2 (Alpha-equivalence relation used implicitly)

α ≡ α (EQvar) int ≡ int
(EQint)

τ1 ≡ τ ′
1 τ2 ≡ τ ′

2

τ1 → τ2 ≡ τ ′
1 → τ ′

2

(EQarrow)

α1 6∈ V ar(τ) ∪ V ar(τ ′) τ [α1/α] ≡ τ ′[α1/β]
∀α.τ ≡ ∀β.τ ′ (EQall)

∆ ` τ

α ∈ ∆
∆ ` α

(WFvar)
∆ ` int

(WFint)

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2
(WFarrow)

∆, α ` τ

∆ ` ∀α.τ
(WFall)

∆; Γ ` e : τ

x : τ ∈ Γ
∆; Γ ` x : τ

(Tvar)
∆; Γ ` n : int

(Tint)

∆; Γ ` e1 : int ∆; Γ ` e2 : int
∆; Γ ` e1 + e2 : int

(Tadd)

∆ ` τ1 x 6∈ Dom(Γ) ∆; Γ, x:τ1 ` e1 : τ2

∆; Γ ` λx:τ1.e : τ1 → τ2
(Tfun)

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2
(Tapp)

∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
(Tforall)

∆ ` τ ∆; Γ ` e : ∀α.τ ′

∆; Γ ` e [τ ] : τ ′[τ/α]
(Ttyapp)
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