
CS 441 Programming Languages

Assignment #6

Due: Monday, 24 November 2008 (by midnight)

Preamble

In this assignment, there is a programming part and a theory part. You may do the programming part
either individually or in pairs. If you work in pairs, each member of the pair will receive the same grade for
the program. When you email your program files to Rob (rdockins@cs.princeton.edu), you should include
in the email the names of all who contributed to the program.

Each person must write up and hand in the answers to the theory questions individually. You may toss
around ideas with your classmates about the problems but you need to write up the end results yourself.

You have two weeks to complete the assignment. (Try not to leave it all to the very end!)

A Language with Pattern Matching

Programming languages like ML have pattern matching syntax that makes it easy to deconstruct and use
complex data structures. We will take a look at pattern matching in a language with tuples and sum types.
Here is the language:

Types τ ::= int | τ1 → τ2 | unit | τ1 ∗ τ2 | τ1 + τ2

Values v ::= n | λx:τ.e | () | (v1, v2) | in1[τ] v | in2[τ] v

Patterns p ::= x | | () | (p1, p2) | in1 p | in2 p

Case Branches bs ::= ⇒ e | p ⇒ e || bs

Expressions e ::= x | v | e1 + e2 | e1 e2 | (e1, e2) | in1[τ] e | in2[τ] e | case e of (bs)

(Comment: notice that e1 + e2 is syntax for the addition operation (2 + 2 = 4) whereas τ1 + τ2 is syntax
for a sum type, something completely different.)

Here is a simple example program that builds a pair of pairs of integers and then passes that data
structure to a function that uses pattern matching to deconstruct the term and add all the numbers up:

(λx:(int*int)*(int*int).
case x of

((x1,x2),(x3,x4)) => x1 + x2 + x3 + x4
|| => 0

) ((6,18),(23,26))

Here is another example that ignores the values in the second pair using the “wildcard” (ie, underscore)
pattern:

1

(λx:(int*int)*(int*int).
case x of

((x1,x2),) => x1 + x2
|| => 0

) ((6,18),(23,26))

Below is an example function that uses a sum pattern and the “unit” pattern. The type τ below is
(int ∗ int) + (int ∗ (unit + unit)).

(λx:τ.
case x of

in1(x1,x2) => x1 + x2
|| in2(x1,in1()) => x1 + 10
|| in2(x1,in2()) => x1 + 100
|| => 0)

Assuming the function above is called f and bool is an abbreviation for the type unit + unit then we
can use f as follows:

f (in1[τ] (1,2)) (* result is 3 *)
f (in2[τ] (1,in1[bool]())) (* result is 11 *)
f (in2[τ] (1,in2[bool]())) (* result is 101 *)

You will notice that each of the examples above has a “default” branch with the form ⇒ e. That
default branch will match any value that doesn’t match one of the previous patterns. For example, here is
another function g:

(λx:τ.
case x of

in2(x1,in1()) ==> x1 + 10
|| => 0)

Applying g to each of the arguments we used for f gives these results:

g (in1[τ] (1,2)) (* default branch matches; result = 0 *)
g (in2[τ] (1,in1[bool]())) (* result is 11 *)
g (in2[τ] (1,in2[bool]())) (* default branch matches; result = 0 *)

Operational Semantics

Appendix A contains the complete set of operational rules for the language (except for those you are asked to
come up with yourselves). The special new rules and new judgement forms involved with pattern matching
are presented below. The first new rule is a normal sort of “search rule:”

e −→ e′

case e of (bs) −→ case e′ of (bs)
(Ecase1)

Once we have reduced the primary argument of the case expression to a value, we try to match that
value against the first pattern in the case expression. If it matches, we take the first branch. If it doesn’t
match, we throw the brach away. The last (default) branch will always match because it uses the wildcard
pattern. To define “matching,” we will use a new kind of judgement that has the form: v ∈ p ; S. This
judgement is valid when the value v matches the pattern p. S is a substitution of values (contained inside
v) for corresponding variables from the pattern p. The substitution is applied to the expression in the case

2

statement branch that matches. (The notation S(e) means that substitution S is applied to expression e.)
A second new kind of judgement v 6∈ p defines the conditions under which value v does not match pattern
p. Here are the other operational rules for the case statement (note, names of rules, which you can refer to
in your proofs, appear in parentheses beside each rule):

case v of (⇒ e) −→ e
(Ecase2)

v ∈ p ; S

case v of (p ⇒ e || bs) −→ S(e)
(Ecase3)

v 6∈ p

case v of (p ⇒ e || bs) −→ case v of (bs)
(Ecase4)

Here are the rules for matching patterns. As usual we write [v/x] for the substitution that replaces x
with v. We write “·” for the empty substitution. We write S1 ◦ S2 for the substitution composed of both S1

and S2 (S1 and S2 are required to substitute values for different sets of variables).

v ∈ x ; [v/x]
(EPvar)

v ∈ ; · (EPwild)

() ∈ () ; ·
(EPunit)

v1 ∈ p1 ; S1 v2 ∈ p2 ; S2

(v1, v2) ∈ (p1, p2) ; S1 ◦ S2
(EPpair)

v ∈ p ; S

in1[τ] v ∈ in1 p ; S
(EPin1)

v ∈ p ; S

in2[τ] v ∈ in2 p ; S
(EPin2)

I am leaving out the definition of v 6∈ p. It will be your job to define it (see below for questions).

Typing Rules

The standard typing rules for addition, functions, pair and sum type introduction don’t change when we
add pattern matching. Naturally, however, there are new rules for the case statements and for type checking
patterns. In addition to the standard type checking judgement with form Γ ` e : τ , we define two other new
judgement forms. The first has the form Γ ` bs : τ1 =⇒ τ2. It checks that the case branches bs all have
patterns p for values with type τ1 and expression bodies e that return values with type τ2. The second new
judgement form is ` p : τ =⇒ Γ. This second judgement checks that p is a pattern for values with type τ
and that it includes variables that match values with types given by Γ. Here are the new rules:

Judgement form: Γ ` e : τ

Γ ` e : τ1 Γ ` bs : τ1 =⇒ τ2

Γ ` case e of (bs) : τ2
(Tcase)

Judgement form: ` p : τ =⇒ Γ

` x : τ =⇒ x:τ
(TPvar) ` : τ =⇒ · (TPwild)

` () : unit =⇒ ·
(TPunit)

` p1 : τ1 =⇒ Γ1 ` p2 : τ2 =⇒ Γ2 Dom(Γ1) ∩Dom(Γ2) = ∅
` (p1, p2) : τ1 ∗ τ2 =⇒ Γ1,Γ2

(TPpair)

3

` p : τ1 =⇒ Γ1

` in1 p : τ1 + τ2 =⇒ Γ1
(TPin1)

` p : τ2 =⇒ Γ2

` in2 p : τ1 + τ2 =⇒ Γ2
(TPin2)

Judgement form: Γ ` bs : τ1 =⇒ τ2

Γ ` e : τ2

Γ ` ⇒ e : τ1 =⇒ τ2
(Tbs1)

` p : τ1 =⇒ Γ1 Dom(Γ) ∩Dom(Γ1) = ∅ Γ,Γ1 ` e : τ2 Γ ` bs : τ1 =⇒ τ2

Γ ` p ⇒ e || bs : τ1 =⇒ τ2
(Tbs2)

The complete set of typing rules for the language may be found in Appendix B.

Theory Questions [10 Points]

Q. 1 [2 Points] Write down a complete typing derivation showing that the following expression is well-typed
(in the empty context) when the type τ is (int ∗ int) + (int ∗ (unit + unit)):

(λx:τ.
case x of

in2(x1,in1()) ==> x1 + 10
|| => 0)

Q. 2 [3 Points] Write down a collection of inference rules that define the “does not match” judgement
v 6∈ p.

Q. 3 [3 Points] Given your definition of “does not match” from question Q. 2, prove that if ` v : τ and
` p : τ =⇒ Γ then either v 6∈ p or v ∈ p ; S. (If this theorem is false because then change your definition
in Q. 2 to make it true!!)

Q. 4 [2 Points] Suppose for a second that one of the other students in the class (not you, of course!) gave
an improper definition of the judgement v 6∈ p such that the lemma in question 3 was false. Which of the
following other lemmas about the language are guaranteed to be false (more than one may be false – list all
of the false ones in your answer): (a) substitution lemma (b) canonical forms lemma (c) exchange lemma (d)
progress lemma (e) preservation lemma. Explain in a sentence or two why the lemma(s) in question is(are)
false.

Implementation Question [10 Points]

Q. 5 [10 Points] Your job is to implement the operational semantics of the pattern matching language.
T To do so, you will extend the DeBruijn-based implementation of assignment #4. In assignment #4, the
language of terms was very simple. In particular, there was only one way to introduce a new variable and only
one variable was introduced at a time (using the λx.e expression). In the pattern matching language however,
many variables may be introduced at one time using a pattern. As an example, consider the following code
(I’m omitting typing declarations from the code because they do not play a role in the operational semantics):

(λx.
case x of

((x1,x2),) => x1 + x2
|| => 0

) ((6,18),(23,26))

4

The equivalent DeBruijn expression will look like this:

(λ.
case [1] of

((?,?),) => [2] + [1]
|| => 0

) ((6,18),(23,26))

Notice that in the DeBruijn representation, the patterns have “?” in them in place of introducing a
variable name. (The question marks differentiate variable introduction from wildcard patterns.)

Here is a slightly more complex example:

(λx.
case x of

((x1,x2),(x3,x4)) => x1 + x2 + x3 + x4
|| => 0

) ((6,18),(23,26))

It will be translated into:

(λ.
case [1] of

((?,?),(?,?)) => [4] + [3] + [2] + [1]
|| => 0

) ((6,18),(23,26))

In the file lam.sml, there are 2 structures, DB and Lam. DB contains datatypes that defines the syntax of
expressions (exp), branches (bs) and patterns (pat) in the DeBruijn representation. Lam contains contains
similar datatypes for the variable representation. Your job is to implement substitution and single step
functions in Lam and to implement conversion functions in DB. For the single step functions, you should
follow the operational definitions exactly. In particular, you should implement one function for each different
judgement form.

Each structure contains printing functions to help you with debugging. In addition, the test.sml file
implements a random expression generator that you can use to test your implementation. Use comments to
explain your implementation and any interesting design decisions.

Appendix A: Operational Semantics

Pattern Matching Judgement Form: v ∈ p ; S

v ∈ x ; [v/x]
(EPvar)

v ∈ ; · (EPwild)

() ∈ () ; ·
(EPunit)

v1 ∈ p1 ; S1 v2 ∈ p2 ; S2

(v1, v2) ∈ (p1, p2) ; S1 ◦ S2
(EPpair)

v ∈ p ; S

in1[τ] v ∈ in1 p ; S
(EPin1)

v ∈ p ; S

in2[τ] v ∈ in2 p ; S
(EPin2)

Pattern Non-Matching Judgement Form: v 6∈ p

5

(Your job)

Single Step Judgement Form: e −→ e′

e1 −→ e′
1

e1 + e2 −→ e′
1 + e2

(Eadd1)
e2 −→ e′

2

v1 + e2 −→ v1 + e′
2

(Eadd2) (n1 + n2 = n3)
n1 + n2 −→ n3

(Eadd3)

e1 −→ e′
1

e1 e2 −→ e′
1 e2

(Eapp1)
e2 −→ e′

2

v1 e2 −→ v1 e′
2

(Eapp2)
(λx:τ.e) v −→ e[v/x]

(Eapp3)

e1 −→ e′
1

(e1, e2) −→ (e′
1, e2)

(Epair1)
e2 −→ e′

2

(v1, e2) −→ (v1, e
′
2)

(Epair2)

e −→ e′

in1[τ] e −→ in1[τ] e′ (Ein1) e −→ e′

in2[τ] e −→ in2[τ] e′ (Ein2)

e −→ e′

case e of (bs) −→ case e′ of (bs)
(Ecase1)

case v of (⇒ e) −→ e
(Ecase2)

v ∈ p ; S

case v of (p ⇒ e || bs) −→ S(e)
(Ecase3)

v 6∈ p

case v of (p ⇒ e || bs) −→ case v of (bs)
(Ecase4)

Appendix B: Typing Rules

Judgement form: ` p : τ =⇒ Γ

` x : τ =⇒ x:τ
(TPvar) ` : τ =⇒ · (TPwild)

` () : unit =⇒ ·
(TPunit)

` p1 : τ1 =⇒ Γ1 ` p2 : τ2 =⇒ Γ2 Dom(Γ1) ∩Dom(Γ2) = ∅
` (p1, p2) : τ1 ∗ τ2 =⇒ Γ1,Γ2

(TPpair)

` p : τ1 =⇒ Γ1

` in1 p : τ1 + τ2 =⇒ Γ1
(TPin1)

` p : τ2 =⇒ Γ2

` in2 p : τ1 + τ2 =⇒ Γ2
(TPin2)

Judgement form: Γ ` bs : τ1 =⇒ τ2

Γ ` e : τ2

Γ ` ⇒ e : τ1 =⇒ τ2
(Tbs1)

6

` p : τ1 =⇒ Γ1 Dom(Γ) ∩Dom(Γ1) = ∅ Γ,Γ1 ` e : τ2 Γ ` bs : τ1 =⇒ τ2

Γ ` p ⇒ e || bs : τ1 =⇒ τ2
(Tbs2)

Judgement form: Γ ` e : τ

x:τ ∈ Γ
Γ ` x : τ

(Tvar)
Γ ` n : int

(Tint)

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 + e2 : τ2

(Tadd)

Γ, x:τ1 ` e : τ2 x 6∈ Dom(Γ)
Γ ` λx:τ1.e : τ1 → τ2

(Tfun)
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2
(Tapp)

Γ ` () : unit
(Tunit)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2
(Tpair)

Γ ` e : τ1

Γ ` in1[τ1 + τ2] e : τ1 + τ2
(Tin1)

Γ ` e : τ2

Γ ` in2[τ1 + τ2] e : τ1 + τ2
(Tin2)

Γ ` e : τ1 Γ ` bs : τ1 =⇒ τ2

Γ ` case e of (bs) : τ2
(Tcase)

7

