
CS 441 Programming Languages

Assignment #4

Due: Friday, 17 October 2008 (by class time)

DeBruijn indices are a way of representing bound variables conveniently and efficiently. Instead of using
variable names (strings), one uses integer indices. DeBruijn indices uniquely identify the binding occurrence
of a variable. In general, the index [n] refers to the value bound by the nth binding expression counting
outward from the occurrence. (We’ll start the count at 1.). For example, consider the DeBruijn expression
(λ.λ.([2] [1])). In this expression, each λ introduces a variable (but doesn’t it give it a name – the variable
will be referred to using indices). The body of the inner function is the expression ([2] [1])). This expression
is an application of the variable named [2] to the variable named [1]. The [2] refers to the variable bound
2 steps outside the current expression (ie: the outer λ) and the variable [a] refers to the variable bound 1
step outside the current expression (ie: the inner λ). In our normal syntax, the expression (λ.λ.([2] [1])) is
equivalent to (λx.λy.(x y)). Here are a couple of other examples:

Reference Representation Representation
Number Using Variables: Using DeBruijn:
1. λx.x λ.[1]
2. λx.λx.x x λ.λ.[1] [1]
3. (λx.x x) (λx.x x) (λ.[1] [1]) (λ.[1] [1])
4. (λz.z z) (λy.y y) (λ.[1] [1]) (λ.[1] [1])
5. λx.λy.(x (λx.x x)) λ.λ.([2] (λ.[1] [1]))
6. λx.x λy.y x λ.[1] λ.[1] [2]

Notice that in example 6, the same variable x is referred to by different indices in the DeBruijn represen-
tation (once by [1] and once by [2]). Also in example 6, the same index [1] is used to refer to two different
variables, once it corresponds to x and once it corresponds to y!

In general, we’ll write DeBruijn expressions using the following notation:

Index n ::= 1 | 2 | ...

Expression e ::= [n] | λ.e | e1 e2

As the examples above suggest, it is possible to convert back and forth between DeBruijn representations
and normal variable representations. To do so, we’ll need to use an environment that associates variable
names with indices. We’ll define the environment like this:

Environment E ::= nil | E, x = i

We’ll also need a function to increment all the indices in an environment and to lookup variables in an
environment. I’ll define the judgements ` incr E1 E2 and ` lookup E1 x n for doing this. Note, instead

1

of working with constructors S and Z as we have before for natural numbers, I’ll work with the numbers 1,
2, 3, etc that we are all familiar with and freely use operations like addition, knowing we could define them
from first principles if we really wanted to.

` incr nil nil

` incr E1 E2

` incr (E1, x = n) (E2, x = (n + 1))

` lookup (E, x = n) x n

` lookup E y n (x 6= y)
` lookup (E, x = n′) y n

Now we’ll define the judgement for converting normal expressions into DeBruijn expressions. It has the
form “E ` evar = edb”. You can read this as saying “In environment E, expression with variables evar can
be converted into DeBruijn expression edb and vice versa.”

` lookup E x n

E ` x = [n]

E ` e1 = e′1 E ` e2 = e′2
E ` e1e2 = e′1e

′
2

` incr EE′ E′, x = 1 ` e = e′

E ` λx.e = λ.e′

Q. 1[3 points] Defining Free Variables A free variable is a DeBruijn variable [k] that is nested inside
fewer than k lambdas. For example, we have marked with a ∗ the free variables in the following expression:

λ.λ.([2] [3]∗ (λ.[3] [4]∗))

Notice also that if we wrap one more lambda around the entire expression, no variables are free. In other
words, the following has no free variables:

λ.λ.λ.([2] [3] (λ.[3] [4]))

Consider again the expression λ.λ.([2] [3]∗ (λ.[3] [4]∗)). In this expression, [3]∗ is under 2 lambdas and
computing 3−2 gives us 1. Similarly, [4]∗ is under 3 lambdas and computing 4−3 is also 1. Consequently, [3]∗

and [4]∗ refer to the same free variable. If we wanted to refer to that variable outside of any λ expression,
we’d call it the variable [1]. With this information, define a function FV that computes the set of free
DeBruijn variables in an expression e. It should be the case that:

FV (λ.λ.([2] [3]∗ (λ.[3] [4]∗))) = {[1]}

You may use a function incr that increments all variables in a set by 1 and a function decr that decrements
all variables in a set by 1. For your reference, the definition of free variables for ordinary lambda terms can
be found both in the lecture slides and in your textbook (definition 5.3.2).

Q. 2[3 points] Definition of Substitution for DeBruijn Give a definition of capture-avoiding substi-
tution for DeBruijn expressions. In other words, define e1[e2/i], the capture-avoiding substitution of e2 for
free variable [i] in e1. The definition should have a similar form to the definition given in the slides in class
(in other words, define a function with 1 case for each different kind of DeBruijn expression). To facilitate
the definition, you may define one or more auxiliary functions. Where appropriate, define your functions
by induction over the structure of expressions (ie: one case per different sort of expression). Here are some
examples:

Number Substitution: Result:
1. (λ.[1] [2])[λ.[1]/[1]] (λ.[1] λ.[1])
2. (λ.[1] [2])[[3]/[1]] (λ.[1] [4])
3. (λ.[1] [1])[[3]/[1]] (λ.[1] [1])

2

Q. 3[6 points] Implement and test the following functions in ML by downloading and modifying the file
http://www.cs.princeton.edu/courses/archive/fall08/cos441/assignments/a4code/db.sml.

In the DB structure:

(* subst e1 i e2 = e1[e2/i] *)
fun subst : exp -> var -> exp -> exp
(* if e1 --> e2 then step e1 = e2 *)
fun step : exp -> exp

In the Lam structure:

(* Convert from Variables to DeBruijn Indices *)
fun var2db : exp -> DB.exp
(* Convert from DeBruijn Indices to Variables *)
fun db2var : DB.exp -> exp

Once you’ve implemented these functions, you can take a look at how they all work together using the
function step that I’ve defined for you in the Lam module.

Q. 4[2 points] Recall that any single-step operational relation (including the single step call-by-value
relation on DeBruijn terms) with the form e1 −→ e2 can be extended to a multi-step relation using the
following two rules:

e −→∗ e
(reflexivity)

e1 −→ e2 e2 −→∗ e3

e1 −→∗ e3
(transitivity)

Prove that the multi-step relation itself is transitive. In other words prove that if e1 −→∗ e2 and e2 −→∗ e3

then e1 −→∗ e3.

Q. 5[1 points] Consider the following slightly different definition of multistep relations:

e =⇒∗ e
(reflexivity2)

e1 =⇒∗ e2 e2 −→ e3

e1 =⇒∗ e3
(transitivity2)

Consider this theorem (identical to the one you proved in question 4): if e1 =⇒∗ e2 and e2 =⇒∗ e3 then
e1 =⇒∗ e3. In one sentence, what is the key difference between the proof you need to do for this theorem
vs. the proof you did in question 4? In order to answer this question correctly, you probably need to do the
proof. However, don’t hand it in. Just explain what the key difference between the two proofs is.

3

