Introduction to Computer Input Devices and Their Evaluation

Shumin Zhai IBM Almaden Research Center

First Mouse Patent (Engelbart, 1964)

First Mouse (Douglas Engelbart and William English, 1964)

"A Research Center for Augmenting Human Intellect," Douglas C. Engelbart, and William K. English, *Proc. 1968 Fall Joint Computer Conference*

A Variety of Input Devices

Mouse
Stylus
Touchscreen
Touchpad
Joystick

....

Performance Evaluation

"I like it!" / "It is cool!" is not enough

- "Perception is not always reality"
- Conscious articulation is not always behavior (describe how to ride a bike)
- Complexity of human behavior/performance beyond analyses
- Individual differences
 - Objectivity
 - Making HCI an empirical (good) science
 - Iterative Design

Iterative Design

Qualitative Analysis

Touchscreen

- Pros
- Cons
- Stylus / light pen
 - Pros
 - Cons

Quantitative Performance Evaluation

What to measure?

 Depending on the task / application scenario

Common measures

- Trial completion time
- Error rate
- Learning speed
- Comfort / fatigue
- etc.

Pointing Device Evaluation

Real task: Interacting with WIMP interface

- Experimental task: target acquisition
 - abstract, elemental, essential

Performance measures: time, error rate

Task modeling for evaluation

Bring task modeling to device evaluation

• Card, English, Burr, 1978

"Evaluation of mouse, rate controlled isometric joystick, step keys and text keys for text selection on a CRT",

Ergonomics, vol. 21, 601-613

1/b - Index of Performance, Throughput, Bandwidth

Fitts' law

"The information capacity of the human motor system in controlling the amplitude of movement",

Journal of Experimental Psychology, vol 47, 381-391

Experimental Design

Fairness for the given task Wide enough ID combinations W's: from character size (10) to icon (30 \bigcirc pixel) • A's: from short (60) to cross screen (800) Multiple individuals/subjects A B C A B Balancing orders BCA **B**A **CAB** Statistical analysis Controlling error (about 5%)

Lab Assignment

- Measure Fitts' law index of performance with bare hand on paper
- Measure any two devices using Fitts' law with the Almaden Program
 - Compare performance of the two devices
 - Compare devices with bare hand
 - Discuss the validity/benefits of Fitts' law in your study.
 - Discuss pros and cons of the devices: suggest improvements or new designs

Beyond Fitts' law

Hick's law
Key stroke model
Control theoretic modeling
Limitations to Fitts law: pointing only

Trajectory-based tasks

Example: hierarchical menus
Is there a "law" to Steering?

🥤 ᡩ Fichier Edition	Affichage Insertion For	mat Outils Dessin Fen.
▶ 🕞 🖬 😂 🏹 👗	✓Diarositives Plar	· ▲ 品 図 () () () () () () () () () (
Helvetica	Trie <mark>u</mark> se de diapositives Pages de commentaires	
	Diap rama	
	Mastra	i tasque des dia sitives
	Barres d'outils	Masque du plan Masque du document
	Règle Repères %R	Masque des pages de commentaires
	 Zoom	night turned
		ugni iunnei
		0

Thought experiment...

2 goals passing $ID = \log_2\left(\frac{A}{M}+1\right)$ 3 goals passing $ID = 2 \log_2(\frac{A}{2W} + 1)$ N+1 goals passing $ID = N \log_2 \left(\frac{A}{N/M} + 1\right)$ ¥ goals passing $ID = \frac{A}{M}?$

"Steering law"

Steering law (Accot and Zhai 1997)

 "Beyond Fitts' law: Modeling trajectory based HCI tasks", Proc of CHI'97

$$T_{C} = a + b ID_{C}$$
$$ID_{C} = \int_{C} \frac{dx}{W(x)}$$

Device comparison in steering tasks (Accot & Zhai, CHI'99)

Conferences and Journals

- CHI: ACM Conference on Human Factors in Computing Systems
- INTERACT: IFIP Conference on Human Computer Interaction
- UIST: ACM Symposium on User Interface Software and Technology
- HFES: Human Factors and Ergonomics Annual Meeting

 ACM Transactions on Computer Human Interaction (TOCHI)