
The Pwn4g3 Kube
A Tangible Interfacing Device

Adam S. Fox
Jonathan S. Fulton

Nathaniel E. Huebscher
Brendan C. Lyons

This project represents our own work, in accordance with university regulations.



1 Introduction

Tangible user interfaces (TUIs) provide the means to interact with computers in a physical
manner. The Pwn4g3 Kube is an example of a TUI that exploits the intuitive properties
of a three dimensional object. By giving the user the freedom to interact with a physical
cube, we believe that the user’s experience in using certain applications will be enriched.
The Pwn4g3 Kube affords natural gestures, such as flipping a cube’s face or rotating the
cube about an axis. To provide the user with a unique and entertaining experience, we map
these gestures to various software applications. This paper presents the Pwn4g3 Kube and
three applications: kubeLAUNCH, kubeMAZE, and kubeSECURITY.

kubeLAUNCH is an application that allows the user to easily open up installed computer
programs. We felt that the Windows “Quick Launch” system and the Mac “Dock” menu
were both inadequate, because of their physical location on the screen. The Pwn4ge Kube
provides the user with a tangible selection process; one must simply flip the cube’s face. By
mapping gestures to the .exe file of an application, we provide the user the ability to easily
open new instances of his/her favorite software.

kubeMAZE is a simple maze game where the user attempts to escape by rotating the
Pwn4g3 Kube. By interpreting the user’s input gestures as on-screen movement direction,
one can gain an enriched physical “feel” for a simple puzzle. kubeMAZE is designed with
younger children in mind; a child should easily learn to use the Kube like a toy.

kubeSECURITY is an application that is built on the idea that passwords are remem-
bered as physical gestures. As such, it might be possible to remember a sequence of Kube
flips as a password, especially for those who are disabled and cannot use a keyboard properly.
This application implements that idea, where the user can play around with using the Kube
to create a password.

2 Project Break-up

• Adam: Physical Cube design. Initial Bluetooth setup. Implementation of Java Serial
Communication API. Aid with initial data analysis and face recognition.

• Brendan: Aid with Initial Bluetooth setup. Data parsing. Initial data analysis and
face recognition.

• Jonathan: Software design.

• Nate: Gesture recognition. Testing the finished product and experiment design.

1



3 Design

3.1 Hardware, Connectivity, and Initial Data Processing

3.1.1 Materials

• WiTilt v3.0 three-axis accelerometer from SparkFun Electronics

• Clear plastic baseball display. (3 inch cube)

• Jabra A320s Bluetooth Stereo USB Adapter

• Poster wall mounts

3.1.2 Setup

The WiTilt v3.0 was a very useful three-axis accelerometer that allowed for Bluetooth com-
munication. When properly connected, the device outputs X, Y, and Z acceleration data
along with gyroscope data R. The WiTilt fits perfectly inside of the three inch clear plastic
baseball display cube. We used two adhesive poster wall mounts to affix the WiTilt in the
center of the cube, trying to make it as nearly perpendicular or parallel to the sides of the
cube as possible. Since the display case is very simply to open and close, this setup allowed
for easy access to the device for turning it on and off and for charging. In addition, by
making the device as in line with the sides as possible we were able to ensure uniform output
from the accelerometers.

We then proceeded to sync the device with our computer. In order to make this as
portable as possible between our laptops, we purchased the Jabra Bluetooth adapter, which
allowed us to create Bluetooth serial ports via our USB ports. Next, we installed a very
useful set of Java libraries, GiovynetSerialPort (http://www.giovynet.com/serialport.html),
which contains basic APIs that allowed us to communicate with serial ports. After pairing
the WiTilt and the computer with the built-in Bluetooth software (or the software that came
with the Jabra), we were able to use Java to connect with and communicate with the device.

Each time the device was connected to the computer for a particular application, it was
configured to output the raw data from the X, Y, and Z accelerometers. We also chose to
receive the gyroscope data. This data is transmitted to the computer as a line, character
by character, for each reading. Each line is then parsed into integers, one for each direction
plus the gyroscope information. A little experimentation showed that each side of the cube
was uniquely represented by these three integers. The integers were limited to between 0
and 1024. While it was on a side, however, each integer fell into one of three ranges: low
(190-320), mid(450-570), and high (700-830). Depending on which of X, Y, and Z fell into
which of low, mid, and high, the current top side of the cube could be easily determined. If
the values of X, Y, and Z did not indicate a proper side, a default value was returned. This
occurred, for example, when the cube was held askew or shaken violently.

2



3.2 Kube API

The Kube API offers two sets of buffers that clients can access: the four data buffers
(X,Y,Z,R) and the actions buffer (FORWARD, BACKWARD, LEFT, RIGHT, OVER). The
data buffers store the raw data that the Kube sends and the actions buffer stores actions as
they are determined. It is critical to note that we assume the user starts with the cube in
a predefined orientation, namely the orientation such that the writing on the WiTilt can be
read facing upwards. In order to determine when an action occurs, it is necessary to store
the current face that points up. When this face changes, an action has occurred. To deter-
mine which action occurred, it is necessary to store the current state of the Kube. Assuming
the Kube’s orientation is only changed when it is flipped (i.e. the user does not spin the
cube), then it is always possible to know the current orientation of the Kube. Every rotation
(FORWARD, BACKWARD, LEFT, RIGHT, but not OVER because it actually maps to
four different orientations) is a simple permutation operation determined by the previous
side and the new side. Once the action is determined, the orientation is updated and the
action is added to the actions buffer. In summary, the action definition function works as
follows:

1. If the current side changes then

2. The action is determined by the current orientation and the new side.

3. The action is added to the actions buffer.

4. The orienation is adjusted according to the action.

This is the only major algorithm we use for the Kube API other than the face-determination
algorithm previously described. It would be possible to define other actions, such as “shake”
or “twisting”, but we currently do not have these implemented.

Figure 1: rootMenu.

3.3 User Interface

We spent quite some time developing what we considered to be a usable and practical inter-
face for testing the Kube. It was developed entirely in Java. The root menu, shown in Fig

3



(1), provides a simple interface for accessing the available applications for the Kube. This
interface consists of four buttons linked to the four cube applications: Passwords, Maze,
Data Stream, and Applications.

Initially, we developed an application that graphically displays the data provided by the
Kube. It includes four plots, one each for the X, Y, Z and R (gyroscope) data streams. The
data is plotted in real time and a screenshot of this application is shown in Fig. (5). This
application was quite useful to explore the capabilities of the Kube and its sensitivity and
responsiveness to user input.

Figure 2: kubeSECURITY menu

Next, we developed an interface for the kubeSECURITY application. This interface,
shown in Fig (2), consists of three buttons and two entry fields. Passwords can be entered
directly using either the Kube or the keyboard. In order to establish a password, the user
must enter the desired password into the two fields, and then click on Set Password. Then,
the user can enter sequences of gestures into the password field and check it against the
password using the Check Password button. Finally, if the user desires to view the password
that he/she created, the View Password button may be used.

Figure 3: kubeLAUNCH Menu

4



To exploit the full capabilities of kubeLAUNCH, we developed an interface, shown in Fig
(3), which can be used to select new programs to map to the actions of forward, backward,
left and right. First, the user can click on the Browse button, which allows him/her to select
a new executable program to map to the desired action. After clicking the corresponding
Set button, the change is complete and the cube is ready to launch the desired programs
whenever desired.

Lastly, we developed a user interface for the kubeMAZE application, shown in Fig. (6).
The purpose of this interface is to test the usefulness of the cube as on-screen navigation
device. The application is quite robust, and can be used to generate a maze of an N by
N grid. As can be seen from the figure, the current position is indicated by a small red
circle. The user can navigate the maze using input from the cube, the arrow keys, or the
buttons on the left of the screen. When the maze is completed, the maze restarts from the
beginning. If the user desires a new maze, he/she may click the New Maze button with
either a new size or with the same one. If the user wants to see a solution shown on the
maze, he/she may click the Show Solution button, which computes the solution to the maze
using a DFS algorithm and plots the solution on the maze. Lastly, the Start/Stop button
on the upper left hand corner starts and stops connectivity with the cube, respectively. If
the user accidentally disorients the cube, he/she may use this same button to reorient it.

4 Testing the Pwn4g3 Kube

Experimental design and implementation is integral to the success of the cube as a viable
HCI device. We performed several primary experiments to test the functionality of the
cube. First, we conducted an experiment to test the effectiveness of the cube with the maze
application. Our goal was to compare the effectiveness of the cube as input device with
that of traditional input controls: namely, on-screen buttons and arrow keys. Our second
experiment tested the effectiveness of the cube as a method for password security protection
by investigating individuals’ ability to retain passwords in short term memory as well as its
value as a method for maintaining long term security (e.g. preventing observers from easily
copying security code).

To test the functionality of the cube with the maze application, we conducted an exper-
iment comparing the performance of the cube with that of the on-screen buttons and the
keyboard arrow keys. The on-screen buttons were designed in an unintuitive way, such that
the user needs to pause before each input to think. The experiment included six partici-
pants, picked from a pool of interested persons in a computer cluster in Princeton University.
Participants were asked to complete the maze puzzle (with solution shown) for mazes of size
N = 10, 15,and 20. The following is the data we collected (units are in seconds):

5



Participant 1 N = 10 N = 15 N = 20 Participant 2 N = 10 N = 15 N = 20
Cube 20.3 39.1 86.5 Cube 18.8 53.66 75.67
Buttons 32.3 60.4 150.9 Buttons 29.68 69.41 110.22
Arrow Keys 7.7 13.45 30.1 Arrow Keys 8.17 16.39 23.3

Participant 3 N = 10 N = 15 N = 20 Participant 4 N = 10 N = 15 N = 20
Cube 15.52 18.72 89.33 Cube 34.86 63.91 46.52
Buttons 35.58 33.6 175.8 Buttons 47.94 92.47 70.47
Arrow Keys 8.7 10.71 39.65 Arrow Keys 8.81 17.51 12.74

Participant 5 N = 10 N = 15 N = 20 Participant 6 N = 10 N = 15 N = 20
Cube 15.31 25.03 86.28 Cube 24.07 55.06 61.25
Buttons 24.59 34.91 97.78 Buttons 33.95 63.76 47.91
Arrow Keys 6.49 9.93 23.38 Arrow Keys 8.06 17.27 16.26

Figure 4: Charting performance on kubeMAZE

Examining this data, we can clearly see that the cube performed better than the on-
screen buttons but worse than the keyboard arrows in all cases. The time taken to complete
the maze increases dramatically between the three maze sizes for all input devices. Figure
(4) is a plot of the average of all participants’ performance for each maze size for each input
device. It is shown that the time increases more dramatically for the buttons and the cube
than for the arrow keys.

6



Comparing the performance of the three input methods, the arrow keys perform much
better than either the buttons or the cube. This could be attributed to various causes. First,
the arrow key interface is very intuitive and very familiar to everyone who is comfortable
using computer (which all of the participants were). Second, use of the arrow keys requires
no processing time; in other words, once the user recognizes what action is required, he/she
can enter the correct key without having to think and the computer does not lag. Alterna-
tively, due to the intentionally cumbersome design of the button controls, the user requires
time to process every step. Also, even though the cube’s actions are as intuitive as the arrow
keys’ there is an inherent lag in the processing time that prevents the user from operating
as quickly and fluidly as he/she may otherwise be able. This is a limitation that should
be explored in future study, as the difference between the performance of the cube and the
arrow keys may be minimized if the user can enter actions as quickly as he/she can think of
them and perform them.

Qualitatively, participants in this study responded positively to the cube. Although they
felt that it was not as easy to use as the keyboard, they all stated that the cube was a much
more interesting input device and enjoyed using it to complete the maze and looked forward
to using the cube for future applications. In particular, the kubeLAUNCH program was met
with particular critical praise.

The experiment we performed to test the cube’s efficacy as a security device was quite
simple. The four participants attempted to memorize randomly generated five, seven, and
nine gesture long passwords and enter them correctly using the password GUI. The par-
ticipants demonstrated mixed success. All four demonstrated about 80% accuracy when
entering passwords with a length of five. However, the participants exhibited only about a
20% success rate with passwords of length of seven, and it was shown that gesture passwords
of length nine are almost impossible to retain in short term memory.

The lackluster performance of the participants does not necessarily indicate a flaw in the
design of the cube or its inability to be used as a security device. Rather, passwords are
not meant to be used as short term memory objects, but quite long term. It remains to
be shown what the longest gestural password someone can effectively memorize for security
protection. One thing is certain, however; it would be very hard for a lurking onlooker to
be able to ascertain a cube-user’s password simply by looking on, and therefore, may add
additional security to normal passwords. Furthermore, we have yet to test the cube as a
security device for small children and disabled persons, for whom we predict the cube would
serve as a very useful security device.

5 Future Work

Although our project was clearly successful, there are many features and funcionalities that
we could add to the Pwn4g3 Kube in the future. One basic addition we could make is the

7



addition of more gestures, including a “shake” and/or “twist” gesture. This would allow the
user to perform various functions while using the cube for on-screen navigation, including
item selection and deletion. We also would like to be able to use the gyroscope data from
the Witilt to detect rotation in the cube so that, even if the user performs an illegal rotation,
the cube will still remain oriented.

We would also like to implement another version of kubeLAUNCH in which the opening
of applications is mapped to sides instead of gestures. We initially tested the application
with this mapping, but eventually decided to use our current mapping, deeming it more
intuitive for the user. However, there are advantages to using the sides of the cube, not
least of which is being able to access six applications instead of four. Actions like opening
additional windows or closing the application can be controlled by the additional gestures
described above.

It is our belief that the Pwn4g3 Kube would be able to significantly aid people who
are unable to use traditional interface devices or who wish to be acclimated to the use of
computational devices through a tangible interface. The Kube would especially be useful
to small children who are learning how to use a computer and to mentally and physically
disabled persons who, for whatever reason, may not be able to use a traditional interface.
For example, one could imagine how incredible it would be to give a person with severe
Parkinson’s disease the ability to control a computer and even password protect his/her
information when before the buttons and gestures of the keyboard and mouse interface were
too small and too sensitive for them. Therefore, for future work, we would like to have the
opportunity to work with some of these demographics in order to test the cube’s effectiveness
in this application.

The cube interface has incredible potential even beyond the scope of the Pwn4g3 cube
project. In thinking about where the cube idea may go in the future, one of the members of
our group, Mr. Jonathan Fulton, has envisioned a device he calls Universal Kube Computing
(UKC). This device, he holds, would add much functionality to the current Kube and would
even be able to completely replace the role of the mouse, keyboard, and remote control for
the TV. The basic design of such an interface would be a cube with a touchscreen LCD or
oLED screen on each side of the cube, allowing the user manipulate items of the display of
each of side. By wirelessly connecting to the a nearby PC, the user could have a small copy of
his/her display appear on the top face of the Kube, which combined with the Touch Screen
features would allow the Kube to act as a pointing device. Additionally, the Kube could
be configured as a universal remote, potentially allowing the Kube to become the center of
future home entertainment systems. If and when such a device will ever exist is only for the
future to tell, but Mr. Fulton’s idea currently serves as a testament to the power of the Kube.

8



References

[1] Hiroshi, Ishii, and Brygg Ullmer. Tangible Bits: Towards Seamless Interfaces between
People, Bits and Atoms. Proceedings of CHI ’97, March 22-27, 1997.

[2] Lertsithichai, Surapong and Matthew Seegmiller. CUBIK: a bi-directional tangible
modeling interface. Conference on Human Factors in Computing Systems, CHI 2002.
April 20-25, 2002, p 756-757.

[3] Van Laerhoven, Kristof et al. Using an autonomous cube for basic navigation and input.
ICMI ’03: Proceedings of the 5th International Conference on Multimodal Interfaces.
Vancouver, British Columbia, Canada. 2003.

[4] Zhou,ZhiYing et al. Interactive Entertainment Systems Using Tangible Cubes.
http://www.ieconference.org/ie2004/proceedings/019%20zhou.pdf, 1/13/2009. 2004.

[5] Kranz, Matthias et al. A Display Cube as a Tangible User Interface. In Adjunct Pro-
ceedings of the Seventh International Conference on Ubiquitous Computing (Demo
22). 2005.

9



Figure 5: dataMenu. A real-time representation of X, Y, Z acceleration and gyroscope data.

10



Figure 6: mazeMenu. A puzzle game that is solvable via Kube gestures.

11


